

EG91xQ Series Hardware Design

LTE Standard Module Series

Version: 1.4

Date: 2025-01-21

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@guectel.com

Or our local offices. For more information, please visit: http://www.guectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/technical.htm. Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2025. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

	Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.
	Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.
•	Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.
SOS	Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.
Www	The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.
	In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas

signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2022-11-28	Lex Ll/ Lena HUANG	Creation of the document
1.0	2023-02-06	Lex Ll/ Barry DENG	First official release
1.1	2023-10-19	Lex LI/ Barry DENG/ Zoey CAO/ Sean FANG	 Added an applicable module EG916Q-GL. Updated the following pins: pin 25: from SPI_CS to RESERVED. pin 26: from SPI_CLK to RESERVED. pin 27: from SPI_MOSI to GNSS_TXD. pin 28: from SPI_MISO to GNSS_RXD. pin 49: from RESERVED to ANT_GNSS. pin 51: from RESERVED to GNSS_PPS. pin 84: from RESERVED to USIM2_CLK. pin 85: from RESERVED to USIM2_CLK. pin 86: from RESERVED to USIM2_DATA. pin 87: from RESERVED to USIM2_VDD. pin 109: from RESERVED to USIM2_VDD. pin 109: from RESERVED to GNSS_ DBG_TXD. pin 110: from RESERVED to GNSS_DBG_RXD. pin 112: from RESERVED to GNSS_PWR_EN. pin 117: from RESERVED to GNSS_PWR_EN. pin 118: from RESERVED to GNSS_VBCKP. Deleted LTE-FDD B14 and B71 (Tables 3, 28, 31 & 40). Added Wi-Fi Scan function (Table 3). Updated the information about USIM interfaces (Table 4 & Chapter 4.3). Updated the USB serial drivers, internet protocol features and the information about SPI interface (Table 4). Updated the functional diagram (Figure 1).

1.2	2023-12-25	Lex Ll/ Barry DENG/ Zoey CAO/ Sean FANG	 Added the operating modes of GNSS part (Chapter 3.1.2). Added the summary of LTE and GNSS Parts' State in All-in-one solution (Chapter 3.1.3). Added the summary of LTE and GNSS Parts' State in stand-alone solution (Chapter 3.1.4). Added the reference design information for the power supply of GNSS part (Chapter 3.2.2). Added the notification of using USB interface to upgrade firmware (Table 4 & Chapter 4.1 & Chapter 4.2). Updated the reference design of GNSS antenna (Figure 32). Added the cable insertion loss of high band (Table 37). Updated the power consumption of EG916Q-GL LTE part (Table 41). Updated the EG915Q-NA recommended footprint
			(Figure 44).6. Added the carrier tape dimension of EG916Q-GL (Table 48).
1.3	2024-07-31	Fanny CHEN/ Barry DENG/ Lem JIN/ Sean FANG	 Added the applicable modules EG915Q-AF and EG915Q-JP. Updated the information of Wi-Fi Scan (Chapters 2.1 & 5.1). Added the maximum data rates of LTE-TDD (Table 4). Updated the current provided by external power supply (Table 6 & Chapter 3.2.2). Added two notes in the summary of LTE and GNSS parts' state in the stand-alone or all-in-one solution (Chapter 3.1.4). Added a note to clarify the preconditions that AT command cannot be used to turn off the module (Chapter 3.4.2). Added a design principle of USIM interface (Chapter 4.3). Updated the default baud rates of debug UART (Table 15). Added a note on UART hardware flow control design (Chapter 4.4). Updated the Galileo and QZSS frequency (Table 38). Added ESD component on GNSS antenna design and added a note on DC power (Chapter 5.2.3). Updated the typical value and maximum value of I_{VBAT}

				(Table 43).
			14.	Updated the power consumption of EG915Q-NA LTE part in idle state (Table 44).
			15.	Updated the power consumption of EG916Q-GL LTE part (Table 47).
			16.	Added a note specifying that do not store or use unprotected modules in environments containing corrosive gases (Chapter 8.2).
		Fanny CHEN/	1.	Deleted the description specifying Wi-Fi Scan function is optional.
1.4	2025-01-21	Zoey CAO/ Sean FANG	2.	Updated the module's coplanarity requirement (Chapter 7.1).
			3.	Updated the pre-baking time to 24 h (Chapter 8.1).

Contents

Saf	ety Informat	ion	3
Abo	out the Docu	Iment	4
Cor	ntents		1
Tab	le Index		10
Fig	ure Index		12
1	Introductio	n	14
		cial Marks	
•	·		
2		verview	
		quency Bands and Functions	
	5	Features	
		ctional Diagram	
		Assignment	
		Description	
	2.0. EVE		
3	Operating	Characteristics	28
	3.1. Ope	erating Modes	28
	3.1.1.	Operating Modes of LTE Part	28
	3.1	.1.1. Sleep Mode	29
	3.1	.1.2. UART Application Scenario	29
	3.1	.1.3. USB Application with USB Remote Wakeup Function	
		.1.4. USB Application with USB Suspend/Resume and MAIN_RI Function	
		.1.5. USB Application without USB Suspend Function	
	3.1	.1.6. Airplane Mode	
	3.1.2.	Operating Modes of GNSS Part	
	3.1.3.	Summary of LTE and GNSS Parts' State in All-in-one Solution	
	3.1.4.	Summary of LTE and GNSS Parts' State in Stand-alone Solution	
	3.2. Pov	ver Supply	
	3.2.1.	Power Supply Pins	
	3.2.2.	Reference Design for Power Supply	
	3.2.3.	Voltage Stability Requirements	
		ו On	
	3.3.1.	Turn On with PWRKEY	
		n Off	
	3.4.1.	Turn Off with PWRKEY	
	3.4.2.	Turn Off with AT Command	
	3.5. Res	et	
4	Application	Interfaces	42
	4.1. USE	3 Interface	42
	4.2. USE	3_BOOT	43

	4.3. US	SIM Interfaces	45
	4.4. UA	ART	
	4.5. PC	CM and I2C Interfaces*	50
	4.6. AD	DC Interfaces	51
	4.7. Ca	amera SPI*	52
	4.8. GF	RFC Interfaces	53
	4.9. Co	ontrol Signals	54
	4.9.1.	W_DISABLE#*	54
	4.10. Inc	dication Signals	55
	4.10.1	I. Network Status Indication	55
	4.10.2	2. STATUS	56
	4.10.3	3. MAIN_RI	56
5	RF Specif	ications	57
	5.1. LT	E/Wi-Fi Scan Antenna Interface	57
	5.1.1.	Antenna Interface & Frequency Bands	57
	5.1.2.	Tx Power	60
	5.1.3.	Rx Sensitivity	60
	5.1.4.	Reference Design	62
	5.2. GN	NSS (Optional)	63
	5.2.1.	Antenna Interface & Frequency Bands	63
	5.2.2.	GNSS Performance	64
	5.2.3.	Reference Design	65
	5.3. RF	F Routing Guidelines	66
	5.4. An	Itenna Design Requirements	68
	5.5. RF	F Connector Recommendation	68
6	Electrical	Characteristics and Reliability	71
		osolute Maximum Ratings	
	6.2. Po	ower Supply Ratings	71
	6.3. Pc	ower Consumption	72
	6.4. Dig	gital I/O Characteristics	76
	6.5. ES	SD Protection	77
	6.6. Op	perating and Storage Temperatures	77
7	Mechanic	al Information	78
		echanical Dimensions	
	7.1.1.	Mechanical Dimensions of EG915Q Series	78
	7.1.2.	Mechanical Dimensions of EG916Q-GL	
	7.2. Re	ecommended Footprint	
	7.2.1.	•	
	7.2.2.	•	
	7.3. To	p and Bottom Views	
	7.3.1.	Top and Bottom Views of EG915Q Series	
	7.3.2.	Top and Bottom Views of EG916Q-GL	84

8	Storage, M	anufacturing & Packaging	85
	8.1. Sto	rage Conditions	
	8.2. Mar	nufacturing and Soldering	
	8.3. Pac	kaging Specification	
	8.3.1.	Carrier Tape	
	8.3.2.	Plastic Reel	
	8.3.3.	Mounting Direction	
	8.3.4.	Packaging Process	90
9	Appendix F	References	91

Table Index

Table 1: Special Marks	14
Table 2: Basic Information	15
Table 3: Frequency Bands and Functions	15
Table 4: Key Features	16
Table 5: Parameter Definition	21
Table 6: Pin Description	21
Table 7: Operating Modes Overview of LTE Part	28
Table 8: Operating Modes Overview of GNSS Part	32
Table 9: Pin Description of Power Supply Interface	34
Table 10: Pin Description of PWRKEY	
Table 11: Pin Description of RESET_N	40
Table 12: Pin Description of USB Interface	42
Table 13: Pin Description of USB_BOOT	44
Table 14: Pin Description of USIM Interfaces	45
Table 15: UART Information (Unit: bps)	
Table 16: Pin Description of UART	48
Table 17: Pin Description of PCM and I2C Interfaces	50
Table 18: Pin Description of ADC Interfaces	52
Table 19: Characteristics of ADC Interfaces	52
Table 20: Pin Description of Camera SPI	53
Table 21: Pin Description of GRFC Interfaces	
Table 22: Pin Description of Control Signals	54
Table 23: W_DISABLE# AT Command Configuration Information	
Table 24: Pin Description of Indication Signals	55
Table 25: Network Status Indication Pin Level and Module Network Status	55
Table 26: MAIN_RI Level and Module Status	56
Table 27: Pin Description of LTE/Wi-Fi Scan Antenna Interface	57
Table 28: Operating Frequency of EG915Q-NA (Unit: MHz)	57
Table 29: Operating Frequency of EG915Q-AF (Unit: MHz)	58
Table 30: Operating Frequency of EG915Q-JP (Unit: MHz)	
Table 31: Operating Frequency of EG916Q-GL (Unit: MHz)	59
Table 32: RF Transmitting Power	60
Table 33: Conducted RF Receiver Sensitivity of EG915Q-NA (Unit: dBm)	60
Table 34: Conducted RF Receiver Sensitivity of EG915Q-AF (Unit: dBm)	60
Table 35: Conducted RF Receiver Sensitivity of EG915Q-JP (Unit: dBm)	61
Table 36: Conducted RF Receiver Sensitivity of EG916Q-GL (Unit: dBm)	61
Table 37: Pin Description of GNSS Antenna Interface	63
Table 38: GNSS Frequency (Unit: MHz)	63
Table 39: GNSS Performance of EG915Q Series	64
Table 40: GNSS Performance of EG916Q-GL	
Table 41: Requirements for Antenna Design	

Table 42: Absolute Maximum Ratings
Table 43: Power Supply Ratings
Table 44: Power Consumption of EG915Q-NA LTE Part (GNSS Part Off)72
Table 45: Power Consumption of EG915Q-AF LTE Part (GNSS Part Off)72
Table 46: Power Consumption of EG915Q-JP LTE Part (GNSS Part Off)73
Table 47: Power Consumption of EG916Q-GL LTE Part (GNSS Part Off)74
Table 48: VDD_EXT I/O Characteristics (Unit: V)76
Table 49: USIM Low-voltage I/O Characteristics (Unit: V)76
Table 50: USIM High-voltage I/O Characteristics (Unit: V)
Table 51: ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %; Unit: kV)77
Table 52: Operating and Storage Temperatures (Unit: °C)77
Table 53: Recommended Thermal Profile Parameters
Table 54: Carrier Tape Dimension Table (Unit: mm) 88
Table 55: Plastic Reel Dimension Table (Unit: mm)
Table 56: Related Documents
Table 57: Terms and Abbreviations

Figure Index

Figure 1: Functional Diagram	. 18
Figure 2: EG915Q Series Pin Assignment (Top View)	. 19
Figure 3: EG916Q-GL Pin Assignment (Top View)	. 20
Figure 4: Power Consumption During Sleep Mode	. 29
Figure 5: Sleep Mode Application via UART	. 29
Figure 6:Sleep Mode Application with USB Suspend/Resume and Remote Wakeup	. 30
Figure 7: Sleep Mode Application with USB Suspend/Resume and MAIN_RI	. 31
Figure 8: Sleep Mode Application without USB Suspend	. 31
Figure 9: All-in-one Solution Schematic Diagram	. 33
Figure 10: Stand-alone Solution Schematic Diagram	. 34
Figure 11: Reference Design of Power Input	. 35
Figure 12: Reference Design of Power Supply	. 36
Figure 13: Reference Design of Turn On with Driving Circuit	. 37
Figure 14: Reference Design of Turn On with Keystroke	
Figure 15: Power-up Timing with PWRKEY	. 38
Figure 16: Power-down Timing with PWRKEY	. 39
Figure 17: Reference Design of Reset with Driving Circuit	. 40
Figure 18: Reference Design of PWRKEY with Driving Circuit	
Figure 19: Reset Timing	. 41
Figure 20: Reference Design of USB 2.0 Interface	. 43
Figure 21: Reference Design of USB_BOOT	. 44
Figure 22: Timing of Entering Download Mode	. 44
Figure 23: Reference Design of USIM1 Interface with an 8-pin USIM Card Connector	. 46
Figure 24: Reference Design of USIM1 Interface with a 6-pin USIM Card Connector	. 47
Figure 25: Reference Design of USIM2 Interface with a 6-pin USIM Card Connector	. 47
Figure 26: Reference Design of UART with Level-shifting Chip (Main UART)	. 49
Figure 27: Reference Design of UART with Transistor Level-shifting Circuit (Main UART)	. 50
Figure 28: Reference Design of PCM and I2C Interfaces	. 51
Figure 29: Reference Design of NET_STATUS Indication	. 55
Figure 30: Reference Design of STATUS	. 56
Figure 31: Reference Design of Main/Wi-Fi Scan Antenna	. 62
Figure 32: Reference Design of GNSS Antenna	. 65
Figure 33: Microstrip Design on a 2-layer PCB	. 66
Figure 34: Coplanar Waveguide Design on a 2-layer PCB	. 66
Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	. 67
Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	. 67
Figure 37: Dimensions of the Receptacle (Unit: mm)	. 69
Figure 38: Specifications of Mated Plugs	. 69
Figure 39: Space Factor of Mated Connectors (Unit: mm)	. 70
Figure 40: EG915Q Series Top and Side Dimensions (Unit: mm)	. 78
Figure 41: EG915Q Series Bottom Dimension (Bottom View, Unit: mm)	. 79

Figure 42: EG916Q-GL Top and Side Dimensions (Unit: mm)	80
Figure 43: EG916Q-GL Bottom Dimension (Bottom View, Unit: mm)	81
Figure 44: EG915Q Series Recommended Footprint (Unit: mm)	82
Figure 45: EG916Q-GL Recommended Footprint (Unit: mm)	83
Figure 46: EG915Q Series Top and Bottom Views	84
Figure 47: EG916Q-GL Top and Bottom Views	84
Figure 48: Recommended Reflow Soldering Thermal Profile	86
Figure 49: Carrier Tape Dimension Drawing (Unit: mm)	88
Figure 50: Plastic Reel Dimension Drawing	89
Figure 51: Mounting Direction	89
Figure 52: Packaging Process	90

1 Introduction

This document describes the EG91xQ series features, performance, and air interfaces and hardware interfaces connected to your applications. The document provides a quick insight into interface specifications, RF performance, electrical and mechanical specifications, and other module information, as well.

This document is applicable to the following modules:

- EG915Q series: EG915Q-NA, EG915Q-AF, EG915Q-JP
- EG916Q-GL

1.1. Special Marks

Table 1: Special Marks

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

2 Product Overview

EG91xQ series are SMD modules with compact packaging, which also support GNSS to meet your specific application demands.

Table 2: Basic Information

Item	EG915Q Series	EG916Q-GL
Packaging type	LGA	LGA
Pin counts	126	126
Dimensions	(23.6 ±0.2) mm × (19.9 ±0.2) mm × (2.4 ±0.2) mm	(26.5 ±0.2) mm × (22.5 ±0.2) mm × (2.4 ±0.2) mm
Weight	Approx. 2.3 g	Approx. 2.9 g

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

Technology	EG915Q-NA	EG915Q-AF	EG915Q-JP	EG916Q-GL
LTE-FDD	B2/B4/B5/B12/ B13/B66	B2/B4/B5/B12/B13/ B14/B66/B71	B1/B3/B8/B18/ B19/B26/B28	B1/B2/B3/B4/B5/B7/ B8/B12/B13/B18/ B19/B20/B25/B26/ B28/B66
LTE-TDD	-	-	-	B34/B38/B39/B40/ B41
GNSS (Optional)	GPS, GLONASS, BDS, Galileo, QZSS	GPS, GLONASS, BDS, Galileo, QZSS	GPS, GLONASS, BDS, Galileo, QZSS	GPS, GLONASS, BDS, Galileo, QZSS
Wi-Fi Scan	802.11b/g/n with 2.4G DSSS beacon	802.11b/g/n with 2.4G DSSS beacon	802.11b/g/n with 2.4G DSSS beacon	802.11b/g/n with 2.4G DSSS beacon

NOTE

Wi-Fi Scan function shares the same antenna interface with the main antenna. These two antennas should use TDM (Time Division Multiplexing) and cannot be used simultaneously. Wi-Fi Scan only supports receiving and does not support transmitting.

2.2. Key Features

Table 4: Key Features

Categories	Descriptions
Supply Voltage	 3.3–4.3 V Typ.: 3.8 V
SMS	 Text and PDU mode Point-to-point MO and MT SMS cell broadcast SMS storage: ME by default
USIM Interfaces	 Support 2 USIM interfaces: USIM1 interface and USIM2 interface Only support Dual SIM Single Standby USIM1: 1.8/3.0 V USIM2: 1.8 V When USIM1 and USIM2 are used at the same time, the power domain of USIM interfaces should be 1.8 V. Otherwise, USIM2 interface will be damaged. USIM2 interface and Camera SPI* cannot be used at the same time.
PCM Interface*	 Supports one digital audio interface: PCM interface Used for audio function with external Codec
I2C Interface*	One I2C interfaceComplies with I2C-bus specification
Camera SPI *	 Supports one camera SPI Supports the SPI dual-wire data transmission USIM2 and Camera SPI cannot be used at the same time.
USB Interface	 Compliant with USB 2.0 specifications (only supports slave mode) Data transmission rate up to 480 Mbps Used for AT command communication, data transmission, GNSS NMEA sentence output (All-in-one solution only), software debugging, firmware upgrade and the output of partial logs The USB interface can be used to upgrade firmware only after the module entering download mode (Pulling up USB_BOOT to VDD_EXT before turning on the module, and then the module will enter download mode).

	• USB serial drivers: Windows 8.1/10/11, Linux 2.6–6.7, Android 4.x–13.x
	systems Main UART:
	 Used for AT command communication and data transmission
	 Baud rate: 115200 bps by default DTO and OTO handware flow control
	RTS and CTS hardware flow control
	Debug UART:
UART Interfaces	 Used for the output of partial logs David rates 115200 hpg. 2 Mhpg (by default)
UART Interfaces	 Baud rate: 115200 bps, 3 Mbps (by default) GNSS UART:
	 Used for outputting GNSS data or GNSS NMEA sentence output
	 Baud rate: 921600 bps
	GNSS debug UART:
	 Used for outputting GNSS system logs
	 Baud rate: 3 Mbps
	NET_STATUS:
Network Indication	 Used for indicating network connectivity status
	 Complies with the AT commands defined in <i>3GPP TS 27.007</i> and <i>3GPP</i>
AT Commands	TS 27.005
	 Complies with Quectel enhanced AT commands
	 Main antenna/Wi-Fi Scan antenna interface (ANT_MAIN)
Antenna Interface	 GNSS antenna interface (ANT_GNSS)
	• 50 Ω characteristic impedance
Transmitting Power	• LTE bands: Class 3 (23 dBm ±2 dB)
	Complies with 3GPP Rel-14 FDD
	Max. LTE category: Cat 1 bis
	• 1.4/3/5/10/15/20 MHz RF bandwidth
LTE Features	 DL modulations: QPSK, 16QAM and 64QAM
	UL modulations: QPSK, 16QAM
	 LTE-FDD Max. data rates: 10 Mbps (DL)/5 Mbps (UL)
	 LTE-TDD Max. data rates: 8.96 Mbps (DL)/3.1 Mbps (UL)
	Complies with TCP/UDP/NTP/NITZ/FTP/HTTP/PING/HTTPS/FTPS/SSL/
Internet Protocol	MQTT/CMUX/PPP/FILE/SMTP/SMTPS/MMS* protocols
Features	 Complies with PPP protocol's PAP and CHAP authentication
	 Normal operating temperature ¹: -35 °C to +75 °C
Temperature Ranges	 Extended operating temperature ²: -40 °C to +85 °C
- -	 Storage temperature: -40 °C to +90 °C
Firmware Upgrade	Via USB 2.0 interface or DFOTA

¹ Within this range, the module's indicators comply with 3GPP specification requirements.

² Within this range, the module retains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as P_{out}, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

RoHS

All hardware components fully comply with EU RoHS directive

NOTE

EG91xQ series support SPI. If you need this function, please contact Quectel Technical Support.

2.3. Functional Diagram

The functional diagram illustrates the following major functional parts:

- Power management
- Baseband part
- Radio frequency part
- Peripheral interfaces
- GNSS part

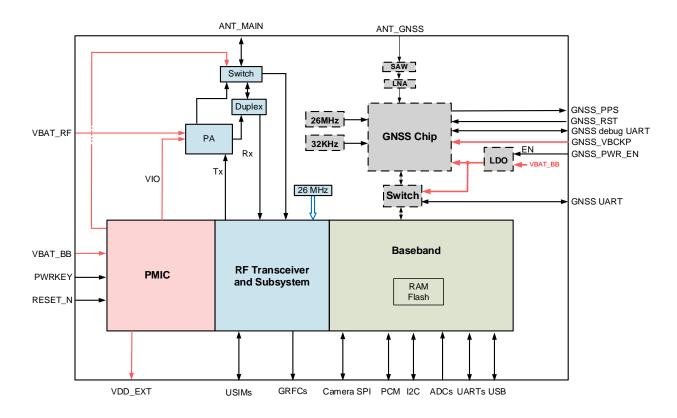


Figure 1: Functional Diagram

2.4. Pin Assignment

	EG915Q Series								
	62 840 840	ANT_AMM ANT_AMM GOD GND GND	57 Reæræd	56 Reserved	55 S4D S4D S4D	53 VBAT.BF VBAT.RF	GNSS_PR	00 80	40
PSM_IND 2 ADC1									49 ANT_GNSS 48 GND
		114 82 RESERVED GND	81 GND	80 GND	79 GND	113 RESERVED	112 GNSS_RST	- 1	GND 47 GND
PCM_CLK	104 RESERVED	115 CAMPADN GND	101 GND	100 GND	99 RESERVED	118 ones veau-	111 RESERVED		46 USIMI_CLK
	63 RESERVED	83 Reserved				98 CAM_SPLDATE	78 CAM_SP[CIK	_	45 USIM_DATA 44 USIM1_RST
PCMLDOUT	64 Reserved	84 USIM2_CLK	119 RESERVED	126 RESERVED		97 CAM.SPI.DATRO	77 GRFC2		43 USIMI_VDD 42 USIMI_DET
9 USB_DP 10 USB_DM	65 RESERVED	85 USIM2_RST	120 RESERVED	125 RESERVED		96 PSM_INT	76 GRFC1		41 12C_SDA 40 12C_SCL
	66 RESERVED	86 U SIM2_D ATA	121 RESERVED	124 RESERVED		95 cam_mclk	75 USB_BOOT		
11 RESERVED 12 RESERVED	67 GND	87 USIM_VDD	122 RESERVED			94 CAM_VDD	74 GND		39 MAIN_RI 38 MAIN_DCD
13 RESERVED	68 GND	88 RESERVED				93 САМ. VODD	73 GND		37 MAIN_RTS
14 RESERVED 15 PWRKEY	105 RESERVED	116 RESERVED GND	90 GND	91 GND	92 RESERVED	117 GNS S_PW R _EN	110 GNS S_D BG_ R XD		36 MAIN_CTS 35 MAIN_TXD
16 RESERVED	106 RESERVED	107 69 Reserved GND	70 GND	71 GND	72 GND	108 Reserved	109 GNS S_D BG_ TXD		34 MAIN_RXD
RESET_N 18 W_DISABLE#	19 AP_AEADY 200 STAUS	NET SIMUS DBG_RNUS DBG_RNUS DBG_RNUS	24 ADCC	25 Reserved	26 regerved 27 gaiss_txd	28 cM35, RXD 29 VDD, EXT	30 MAN DIR	ک وی	VBAT_BB 32 VBAT_BB
GND F	Pins	USB Pins	S	ignal Pins		Power Pins		I2C Pi	ns
RESE	RVED Pins	UART Pins		PCM Pins		USIM Pins		ADC I	Pins

Figure 2: EG915Q Series Pin Assignment (Top View)

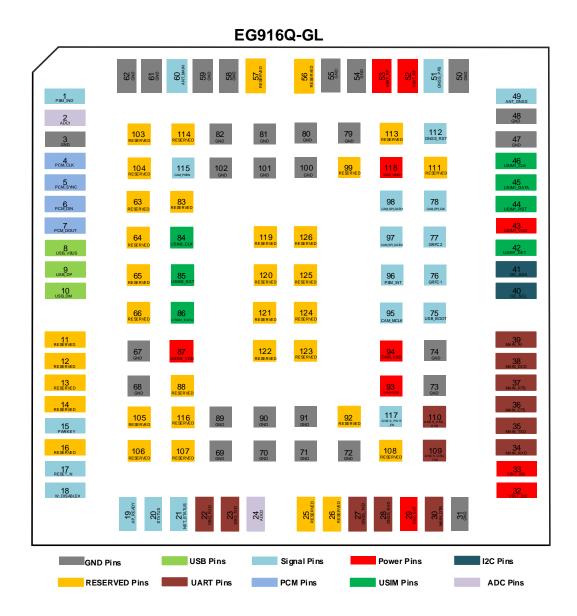


Figure 3: EG916Q-GL Pin Assignment (Top View)

NOTE

- 1. If the module does not need to enter download mode, USB_BOOT (pin 75) should not be pulled up to VDD_EXT before the module successfully starts up.
- In sleep mode, pins 34–37 of the main UART interface, pins 22 and 23 of debug UART interface, USB_BOOT (pin 75), pins 4–7 of PCM interface*, pins 40 and 41 of I2C interface*, and pins 78, 93, 95, 97, 98 and 115 of Camera SPI* are powered down. The driving capacity will be lost and the functions of status indication and data transmission are disabled. Pay attention to it when designing circuits.
- 3. When USIM1 and USIM2 are used at the same time, the power domain of USIM interfaces should be 1.8 V. Otherwise, USIM2 interface will be damaged.
- 4. The module supports SPI. If you need this function, please contact Quectel Technical Support.

- 5. GNSS interface (pins 27, 28, 49, 51, 109, 110, 112, 117, 118) is optional. If you need this function, please contact Quectel Technical Support.
- 6. USIM2 interface and Camera SPI* cannot be used at the same time.
- 7. Keep all RESERVED pins and unused pins unconnected.

2.5. Pin Description

Table 5: Parameter Definition

Parameter	Description
AI	Analog Input
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
DIO	Digital Input/Output
PI	Power Input
PO	Power Output
OD	Open Drain

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
VBAT_BB	32, 33	PI	Power supply for the module's BB part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	External power supply is recommended to provide with current of 0.3 A at least. A test point is recommended to be reserved.	

VBAT_RF	52, 53	PI	Power supply for the module's RF part		External power supply is recommended to provide with current of 1.2 A at least. A test point is recommended to be reserved.
VDD_EXT	29	PO	Provide 1.8 V for external circuit	Vnom = 1.8 V I _o max = 50 mA	Power supply for external GPIO's pull-up circuits. A test point is recommended to be reserved.
GNSS_ VBCKP ³	118	ΡI	Power supply for GNSS RTC	Vmax = 3.6 V Vmin = 1.9 V Vnom = 3.3 V	lf unused, keep it open.
GND	3, 31, 47	, 48, 50	, 54, 55, 58, 59, 61, 62, 67–	74, 79–82, 89–91,	100–102
Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
PWRKEY	15	DI	Turn on/off the module	- V _{IL} max = 0.5 V	Active low. A test point is recommended to be reserved.
RESET_N	17	DI	Reset the module	VILINAX = 0.5 V	Active low. A test point is recommended to be reserved if unused.
Indication Sign	als				
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
STATUS	20	DO	Indicate the module's operation status	VDD_EXT	If unused, keep them
NET_STATUS	21	DO	Indicate the module's network activity status		open.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment

³ This pin is optional. If you need this function, please contact Quectel Technical Support.

USB_VBUS	8	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	A test point must be reserved.
USB_DP	9	AIO	USB differential data (+)		USB 2.0 compliant. Requires differential
USB_DM	10	AIO	USB differential data (-)		 impedance of 90 Ω. Test points must be reserved.
USIM Interfaces	s ⁴				
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
				I_0 max = 50 mA	
USIM1_VDD	43	PO	USIM1 card power supply	Low-voltage: Vmax = 1.85 V Vmin = 1.75 V	Either 1.8 V or 3.0 V USIM1 card is supported and can be identified
				High-voltage: Vmax = 3.05 V Vmin = 2.95 V	automatically by the module.
USIM1_DATA	45	DIO	USIM1 card data		
USIM1_CLK	46	DO	USIM1 card clock	USIM1_VDD	
USIM1_RST	44	DO	USIM1 card reset		
USIM1_DET	42	DI	USIM1 card hot-plug detect	VDD_EXT	If unused, keep it open.
USIM2_VDD 5	87	PO	USIM2 card power supply	USIM1_VDD (Low-voltage)	Connected with USIM1_VDD inside the module. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.
USIM2_DATA ⁵	86	DIO	USIM2 card data	VDD_EXT	Connected with pin 97 (CAM_SPI_ DATA0) internally. 1.8 V power domain is required for

⁴ When USIM1 and USIM2 are used at the same time, the power domain of USIM interfaces should be 1.8 V. Otherwise, USIM2 interface will be damaged.

⁵ USIM2 and Camera SPI* cannot be used at the same time.

				USIM2. Otherwise, this interface will be damaged.
USIM2_RST ⁵	85	DO	USIM2 card reset	Connected with pin 78 (CAM_SPI_ CLK) internally. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.
USIM2_CLK ⁵	84	DO	USIM2 card clock	Connected with pin 115 (CAM_ PWDN) internally. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.

Main UART

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
MAIN_CTS	36	DO	Clear to send signal from the module		Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module		Connect to MCU's RTS. If unused, keep it open.
MAIN_RXD	34	DI	Main UART receive	VDD_EXT	
MAIN_DCD	38	DO	Main UART data carrier detect	-	
MAIN_TXD	35	DO	Main UART transmit		If unused, keep them
MAIN_RI	39	DO	Main UART ring indication	-	open.
MAIN_DTR	30	DI	Main UART data terminal ready	-	
Debug UART					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment

DBG_RXD	22	DI	Debug UART receive	- VDD_EXT	Test points must be	
DBG_TXD	23	DO	Debug UART transmit	VDD_EXT	reserved.	
GNSS UART						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
GNSS_TXD ³	27	DO	GNSS UART transmit	VDD_EXT	Test points are recommended to be	
GNSS_RXD ³	28	DI	GNSS UART receive	VDD_LXI	reserved.	
GNSS debug U	IART					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
GNSS_DBG_ TXD ³	109	DO	GNSS debug UART transmit	- VDD_EXT	Test points must be	
GNSS_DBG_ RXD ³	110	DI	GNSS debug UART receive	VDD_EXT	reserved.	
I2C Interface*						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
I2C_SCL	40	OD	I2C serial clock	VDD_EXT	External pull-up resistor is required.	
I2C_SDA	41	OD	I2C serial data		If unused, keep them open.	
PCM Interface*	•					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
PCM_SYNC	5	DO	PCM data frame sync			
PCM_CLK	4	DO	PCM clock		If unused, keep them	
PCM_DIN	6	DI	PCM data input	- VDD_EXT	open.	
PCM_DOUT	7	DO	PCM data output			
RF Antenna Int	terface					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
ANT_MAIN ⁶	60	AIO	Main antenna/Wi-Fi Scan antenna interface		50 Ω impedance.	

⁶ ANT_MAIN only supports passive antennas.

ANT_GNSS ³	49	AI	GNSS antenna interface		50 Ω impedance.	
GRFC Interface	S					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
GRFC1	76	DO	Generic RF controller		If unused, keep them	
GRFC2	77	DO	Generic RF controller	- VDD_EXT	open.	
Camera SPI* ⁵						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
CAM_MCLK	95	DO	Master clock of the camera		lf unused, keep it open.	
CAM_SPI_CLK	78	DI	Camera SPI clock	_	Connected with pin 85 (USIM2_RST) internally. If unused, keep it open. Connected with pin 86 (USIM2_DATA) internally. If unused, keep it open. If unused, keep it open.	
CAM_SPI_ DATA0	97	DI	Camera SPI data bit 0	VDD_EXT		
CAM_SPI_ DATA1	98	DI	Camera SPI data bit 1	_		
CAM_PWDN	115	DO	Power down of the camera	_	Connected with pin 84 (USIM2_CLK) internally. If unused, keep it open.	
CAM_VDD	94	PO	Camera analog power supply	Vnom = 2.8 V	If unused, keep them	
CAM_VDDIO	93	PO	Camera digital power supply	VDD_EXT	open.	
ADC Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
ADC0	24	AI	General-purpose ADC interface	Voltage range:	If unused, keep them open.	
ADC1	2	AI	General-purpose ADC interface	0–1.2 V		

Other Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment	
USB_BOOT	75	DI	Make the module enter download mode		Active high before power-up. A test point must be reserved.	
W_DISABLE#*	18	DI	Airplane mode control			
PSM_IND*	1	DO	Indicate the module's power saving mode	-		
PSM_INT*	96	DI	External interrupt; wake up the module from power saving mode	VDD_EXT	lf unused, keep them open.	
AP_READY*	19	DI	Application processor ready			
GNSS_PPS ³	51	DO	GNSS pulse per second output	-		
GNSS_RST ³	112	DI	Reset the GNSS chip	-	A test point is recommended to be reserved.	
GNSS_PWR_ EN ³	117	DI	GNSS power enabled	-	If unused, keep it open.	
RESERVED Pins						
Pin Name	Pin No.				Comment	
RESERVED	11–14, 16, 25, 26, 56, 57, 63–66, 83, 88, 92, 99, 103–108, 111, 113, 114, 116, 119–126			, 99, 103–108,	Keep these pins open.	

2.6. EVB Kit

Quectel supplies an evaluation board (UMTS<E EVB) with accessories to develop or test the module. For more details, see *document [1]*.

3 Operating Characteristics

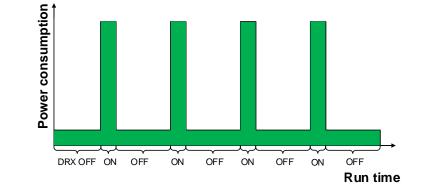
3.1. Operating Modes

The module integrates both LTE and GNSS ⁷ engines which can work as a whole (**All-in-one** solution) unit or work independently (**Stand-alone** solution) according to your demands.

3.1.1. Operating Modes of LTE Part

Table 7: Operating Modes Overview of LTE Part

Modes	Description	IS		
Full Functionality Mode	Idle	Software is active. The module is registered on the network but has no data interaction with the network.		
	Data	Network connection is ongoing. Power consumption is decided by network setting and data rate.		
Minimum Functionality Mode	 AT+CFUN=0 can set the module to the minimum functionality mode when the power is on. Both RF function and USIM card will be invalid. 			
Airplane Mode	mode.	UN=4 or driving W_DISABLE#* low can set the module to airplane ction will be invalid.		
Sleep Mode	Power consumption of the module will be reduced to an ultra-low level. The module can still receive paging, SMS and TCP/UDP data from the network.			
Power Down Mode	The VBAT_ working.	BB and VBAT_RF pins are constantly turned on and the software stops		

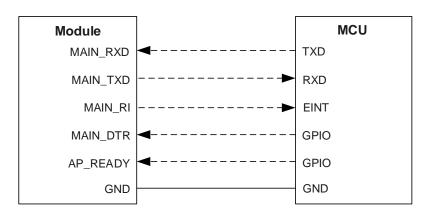

NOTE

For more details about AT+CFUN, see document [2].

⁷ GNSS function is optional. If you need the function, please contact Quectel Technical Support.

3.1.1.1. Sleep Mode

With DRX technology, power consumption of the module will be reduced to an ultra-low level.


NOTE

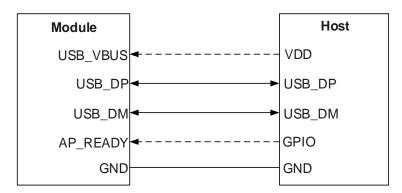
The DRX cycle values are transmitted sent over the wireless network.

3.1.1.2. UART Application Scenario

If the module communicates with the MCU via main UART, both the following preconditions should be met to set the module to sleep mode:

- Execute AT+QSCLK=1. For more details, see document [2].
- Ensure MAIN_DTR is held high or is kept unconnected.

- Driving MAIN_DTR low with the MCU will wake up the module.
- When the module has a URC to report, MAIN_RI signal will wake up the MCU. See Chapter 4.10.3 for details about MAIN_RI.


NOTE

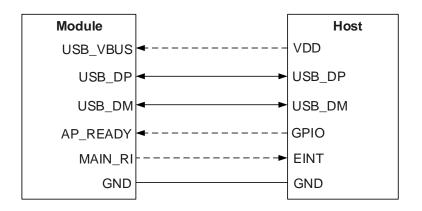
Pay attention to the level match shown in the dotted line between the module and the MCU.

3.1.1.3. USB Application with USB Remote Wakeup Function

If the host supports USB Suspend/Resume and remote wakeup functions, the following three preconditions must be met to set the module to sleep mode.

- Execute **AT+QSCLK=1**.
- Ensure MAIN_DTR is held high or is kept unconnected.
- Ensure the host's USB bus, which is connected to the module's USB interface, enters Suspend state.

Figure 6:Sleep Mode Application with USB Suspend/Resume and Remote Wakeup


- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send remote wake-up signals through USB bus to wake up the host.

3.1.1.4. USB Application with USB Suspend/Resume and MAIN_RI Function

If the host supports USB Suspend/Resume, but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host. The following three preconditions must be met to set the module to sleep mode.

- Execute AT+QSCLK=1.
- Ensure MAIN_DTR is held high or is kept unconnected.
- Ensure the host's USB bus, which is connected to the module's USB interface, enters Suspend state.

Figure 7: Sleep Mode Application with USB Suspend/Resume and MAIN_RI

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will wake up the host through MAIN_RI signal. See Chapter 4.10.3 for details about MAIN_RI behavior.

3.1.1.5. USB Application without USB Suspend Function

If the host does not support USB Suspend function, the following three preconditions must be met to set the module to sleep mode:

- Execute **AT+QSCLK=1**.
- Ensure MAIN_DTR is held high or is kept unconnected.
- Ensure USB_VBUS is disconnected via the external control circuit.

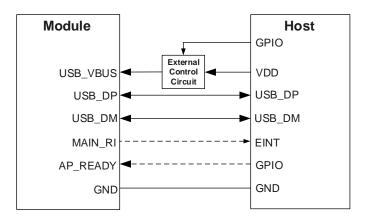


Figure 8: Sleep Mode Application without USB Suspend

Restore the power supply of USB_VBUS will wake up the module.

NOTE

Pay attention to the level match shown in the dotted line between the module and the host.

3.1.1.6. Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following methods.

Hardware:

W_DISABLE#* is pulled up by default. Driving it low makes the module enter airplane mode.

Software:

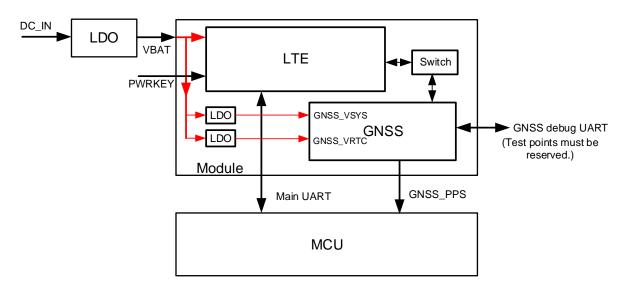
AT+CFUN=<fun> provides choice of the functionality level via setting <fun> to 0, 1 or 4. For more details, see *document [2]*.

- AT+CFUN=0: Minimum functionality mode (Both USIM and RF functions are disabled).
- AT+CFUN=1: Full functionality mode (By default).
- **AT+CFUN=4**: Airplane mode (RF function is disabled).

3.1.2. Operating Modes of GNSS Part

Table 8: Operating Modes Overview of GNSS Part

Modes	Descriptions
	 GNSS starts to work. It can automatically locate, track, and continuously output positioning information. GNSS RF reception function is enabled.
	 Entry conditions: GNSS_PWR_EN is at high-level and GNSS_VBCKP is powered on, the module will automatically enter the Continuous mode.
Continuous	 Continuous mode includes acquisition mode and tracking mode.
Mode	 Acquisition mode: The module starts to search satellites, and to determine visible satellites, coarse frequency, as well as the code phase of satellite signals. When the acquisition is completed, the module automatically switches to tracking mode.
	 Tracking mode: The module tracks satellites and demodulates the navigation data from specific satellites.



Backup Mode*	 Most system components will be shut down to save power consumption.
	• Navigation data will be stored in the backup area for quick positioning next time.
Power Down	 The power supply inside and outside the GNSS is cut off.
Mode	The software stops working.

3.1.3. Summary of LTE and GNSS Parts' State in All-in-one Solution

In **All-in-one** solution, LTE part and GNSS part can be worked as a whole unit. The GNSS part can be regarded as a peripheral of the LTE part. Without an external power supply, the LTE part can internally control the LDO to supply power to the GNSS. If the LTE part is disabled, the GNSS will not work. This allows for convenient communication between LTE and GNSS parts, such as AT command sending for GNSS control, and AGPS data injection.

It should be noted that the UART of the GNSS part is switched by an analog switch inside the module. In **All-in-one** mode, the GNSS UART interface (pins 27 and 28) of the module is not connected inside.

The schematic diagram of **All-in-one** solution is shown below.

Figure 9: All-in-one Solution Schematic Diagram

3.1.4. Summary of LTE and GNSS Parts' State in Stand-alone Solution

In **Stand-alone** solution, LTE and GNSS parts work separately. Thus, they should be controlled separately by MCU. A lithium battery can be added externally to power GNSS_VBCKP independently. You can use MCU to control GNSS_VSYS to power on GNSS chip. At this time, the LTE part does not need to be enabled, and the GNSS part can still work.

The schematic diagram of **Stand-alone** solution is shown below.

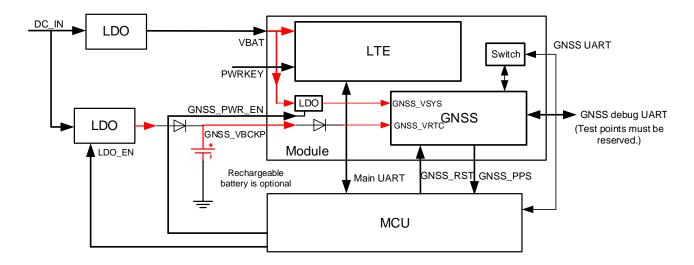


Figure 10: Stand-alone Solution Schematic Diagram

NOTE

- 1. In the **Stand-alone** or **All-in-one** solution, if the GNSS chip is powered externally, the GNSS firmware cannot be upgraded through the LTE network because LTE cannot reset the GNSS chip. If you want to upgrade the GNSS firmware through the LTE network, you need to disconnect GNSS_PWR_EN (pin 117) and GNSS_VBCKP (pin 118) from the outside or set both pins to low.
- 2. Whether in **Stand-alone** or **All-in-one** solution, to facilitate GNSS firmware upgrade, it is recommended to reserve test points for GNSS UART (pins 27 and 28) and GNSS_RST (pin 112).

3.2. Power Supply

3.2.1. Power Supply Pins

The module provides four VBAT pins dedicated to connecting with the external power supply:

Pin Name	Pin No.	I/O	Description	Min.	Тур.	Max.	Units
VBAT_BB	32, 33	ΡI	Power supply for the module's BB part	3.3	3.8	4.3	V
VBAT_RF	52, 53	ΡI	Power supply for the module's RF part	3.3	3.8	4.3	V
GNSS_ VBCKP ⁸	118	ΡI	Power supply for GNSS RTC	1.9	3.3	3.6	V

Table 9: Pin Description of Power Supply Interface

⁸ This pin is optional. If you need this function, please contact Quectel Technical Support.

GND 3, 31, 47, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102

3.2.2. Reference Design for Power Supply

Power design for the module is essential.

For LTE part, it is recommended to use a power supply that can provide the module with at least 1.5 A current. If the voltage difference between input voltage and the supply voltage is small, it is suggested to use an LDO; if the voltage difference is big, a buck converter is recommended.

The following figure shows a reference design for +5 V input power supply.

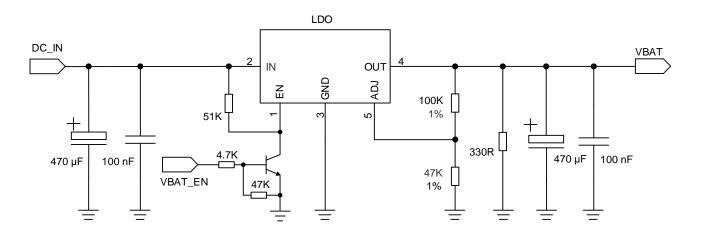


Figure 11: Reference Design of Power Input

NOTE

To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.

For the power supply of GNSS part:

- In **All-in-one** solution, the power supply of GNSS part is controlled by the LTE part internally.
- In **Stand-alone** solution, the power supply of GNSS part is controlled independently by MCU.

For more information about All-in-one solution and Stand-alone solution, see Chapter 3.1.3 & 3.1.4.

3.2.3. Voltage Stability Requirements

The power supply range of the module is 3.3–4.3 V. Ensure the input voltage never drops below 3.3 V.

To decrease the voltage drop, use a bypass capacitor of about 100 μ F with low ESR for VBAT_BB and VBAT_RF respectively and reserve a multi-layer ceramic chip (MLCC) capacitor array with ultra-low ESR. Use three ceramic capacitors (100 nF, 33 pF and 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT pins. The main power supply from an external application should be a single voltage source and can be expanded to two sub paths with the star configuration. The width of VBAT_BB trace and VBAT_RF trace should be at least 1 mm and 2 mm respectively. In principle, the longer the VBAT trace is, the wider it should be.

To avoid the ripple and surge and to ensure the stability of the power supply to the module, it is recommended to add a TVS with $V_{RWM} = 4.7$ V, low clamping voltage and high reverse peak pulse current lpp at the front end of the power supply.

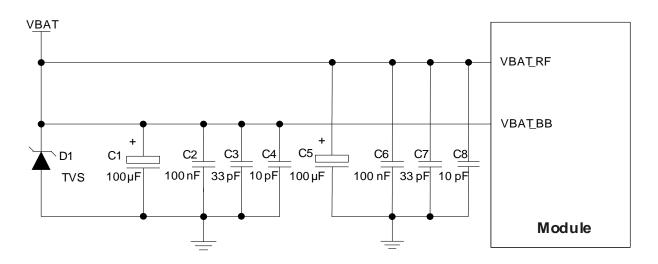


Figure 12: Reference Design of Power Supply

3.3. Turn On

3.3.1. Turn On with PWRKEY

Table 10: Pin Description of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	וח	Turn on/off the module	Active low.
	15	DI		A test point is recommended to be reserved.

When the module is in power-down mode, it can be turned on by driving the PWRKEY low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.

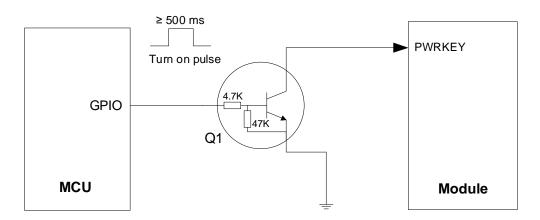


Figure 13: Reference Design of Turn On with Driving Circuit

Another way to control the PWRKEY is using a keystroke directly. When pressing the keystroke, an electrostatic strike may be generated from finger. Therefore, you should place a TVS component near the keystroke for ESD protection.

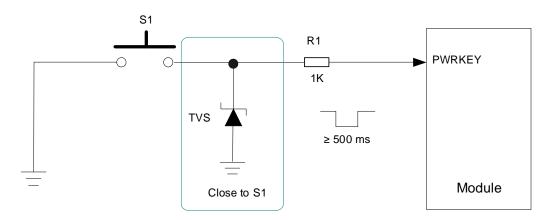


Figure 14: Reference Design of Turn On with Keystroke

The power-up timing is illustrated in the following figure.

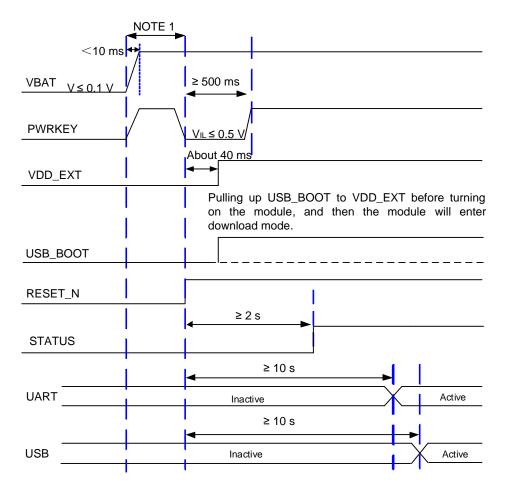


Figure 15: Power-up Timing with PWRKEY

NOTE

- 1. Ensure the voltage of VBAT is stable for at least 30 ms before driving the PWRKEY low.
- If the module needs to turn on automatically but does not need the turn-off function, PWRKEY can be driven low directly to ground with a recommended 4.7 kΩ resistor.

3.4. Turn Off

The following procedures can be used to turn off the module normally.

3.4.1. Turn Off with PWRKEY

Drive the PWRKEY low for at least 650 ms and then release it. Then, the module will execute the turn-off procedure.

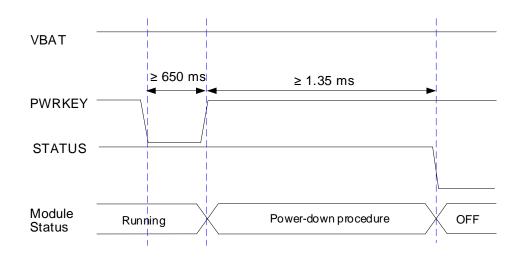


Figure 16: Power-down Timing with PWRKEY

3.4.2. Turn Off with AT Command

For proper shutdown procedure, execute **AT+QPOWD**, which is similar to turning off the module via the PWRKEY pin. See *document* [2] for details about **AT+QPOWD**.

NOTE

- 1. To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.
- 2. If the module is turned on by connecting the PWRKEY to ground for a long time, **AT+QPOWD** cannot be used to turn off the module.
- 3. When turning off the module with the AT command, keep PWRKEY at high level after the execution of the command. Otherwise, the module cannot be turned off successfully.

3.5. Reset

The reset function requires the PWRKEY and RESET_N pins to work together to complete. Pulling down PWRKEY when RESET_N is at low level can reset the module. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 11: Pin Description of RESET_N					
Pin Name	Pin No.	I/O	Description	Comment	
RESET_N	17	DI	Reset the module	Active low. A test point is recommended to be reserved if unused.	

The recommended circuit for reset function is similar to the PWRKEY control circuit. You can use an open drain/collector driver or a button to control RESET_N and PWRKEY pins.

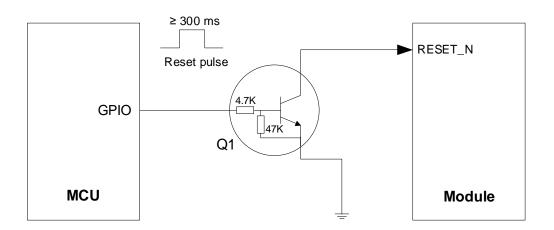
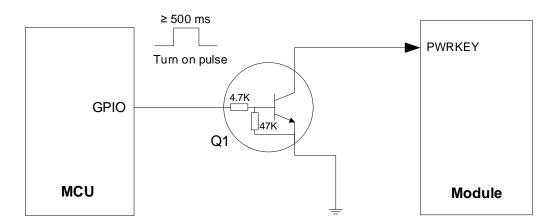
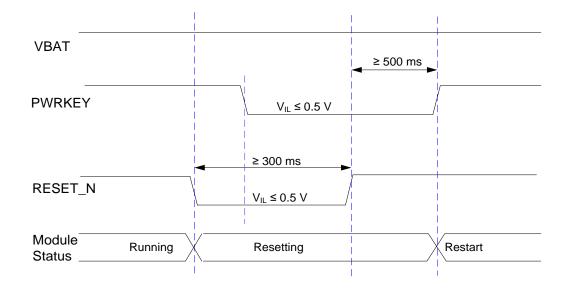




Figure 17: Reference Design of Reset with Driving Circuit

Figure 18: Reference Design of PWRKEY with Driving Circuit

- NOTE
- 1. In reset timing, pull down PWRKEY when RESET_N is at low level.
- 2. Ensure the capacitance on PWRKEY and RESET_N does not exceed 10 nF.

4 Application Interfaces

4.1. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specifications and supports high-speed (480 Mbps) and full-speed (12 Mbps) for USB 2.0. The module only supports USB slave mode. The USB interface can be used for AT command communication, data transmission, GNSS NMEA sentence output (**All-in-one** mode only), software debugging, firmware upgrade and the output of partial logs.

Table 12: Pin Description of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	A test point must be reserved.
USB_DP	9	AIO	USB differential data (+)	USB 2.0 compliant.
USB_DM	10	AIO	USB differential data (-)	 Requires differential impedance of 90 Ω. Test points must be reserved.

Test points of USB 2.0 interface must be reserved, which can be used for firmware upgrading. Only in download mode, the module supports firmware upgrade over USB 2.0 interface.

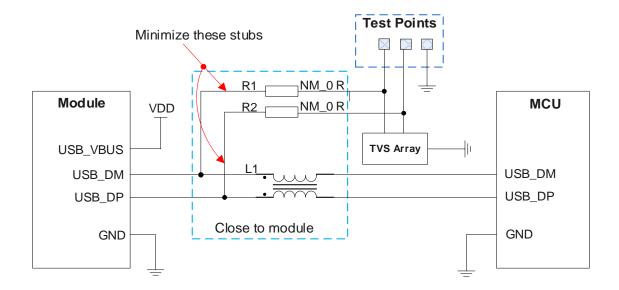


Figure 20: Reference Design of USB 2.0 Interface

It is recommended to add a common-mode choke L1 in series between MCU and the module to suppress EMI. Meanwhile, it is also suggested to add R1 and R2 in series between the module and test points for debugging. These resistors are not mounted by default. To ensure the signal integrity of USB 2.0 data transmission, you should place L1, R1 and R2 close to the module, and keep these resistors close to each other. Moreover, keep extra stubs of trace as short as possible.

To ensure performance, you should follow the following principles when designing USB interface:

- Route USB signal traces as differential pairs with surrounded ground. The impedance of USB 2.0 differential trace is 90 Ω.
- Route USB differential traces at the inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below. For signal traces, provide clearance from power supply traces, crystal-oscillators, magnetic devices, sensitive signals like RF signals, analog signals, noise signals generated by clock and DC-DC.
- Pay attention to the impact caused by stray capacitance of the ESD protection component on USB data lines. Typically, the stray capacitance should be less than 2 pF for USB 2.0.
- Keep the ESD protection components as close to the USB port as possible.

For more details about the USB specifications, visit <u>http://www.usb.org/home</u>.

4.2. USB_BOOT

The module provides a USB_BOOT pin for download. Pulling up USB_BOOT to VDD_EXT before turning on the module, and then the module will enter download mode. Only in this mode, the module supports firmware upgrade over USB 2.0 interface.

Table 13: Pin Description of USB_BOOT

Pin Name	Pin No.	I/O	Description	Comment
USB BOOT	75	וח	Make the module into	Active high before power-up.
036_6001	75	DI	download mode	A test point must be reserved.

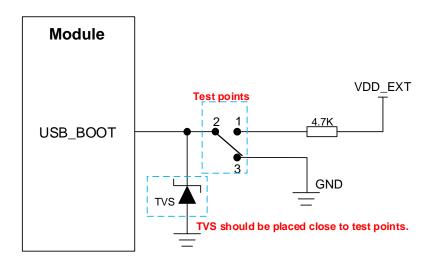
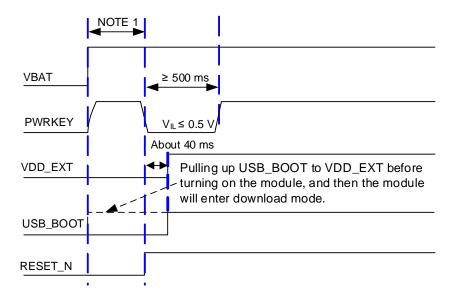



Figure 21: Reference Design of USB_BOOT

NOTE

- 1. Ensure VBAT is stable before driving PWRKEY low.
- 2. Follow the above timing when using MCU control the module to enter the forced download mode.
- 3. If you need to manually force the module to enter download mode, directly connect the test points shown in *Figure 21*.
- 4. The firmware upgrade function of USB interface can only be used in download mode. It is strongly recommended to lead out USB_BOOT and VDD_EXT together with the USB interface.

4.3. USIM Interfaces

The USIM interfaces meets ETSI and IMT-2000 requirements.

- USIM1 interface supports 1.8 V or 3.0 V power domain.
- USIM2 interface only supports 1.8 V power domain.
- When USIM1 and USIM2 are used at the same time, the power domain of USIM interfaces should be 1.8 V. Otherwise, USIM2 interface will be damaged.
- USIM interfaces support Dual SIM Single Standby.
- USIM2 and Camera SPI* cannot be used at the same time.

Pin Name	Pin No.	I/O	Description	Comment
USIM1_VDD	43	PO	USIM1 card power supply	Either 1.8 V or 3.0 V USIM1 card is supported and can be identified automatically by the module.
USIM1_DATA	45	DIO	USIM1 card data	
USIM1_CLK	46	DO	USIM1 card clock	
USIM1_RST	44	DO	USIM1 card reset	
USIM1_DET	42	DI	USIM1 card hot-plug detect	If unused, keep it open.
USIM2_VDD	87	PO	USIM2 card power supply	Connected with USIM1_VDD inside the module. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.
USIM2_DATA	86	DIO	USIM2 card data	Connected with pin 97 (CAM_SPI_DATA0) internally. 1.8 V power domain is required for USIM2.

Table 14: Pin Description of USIM Interfaces

				Otherwise, this interface will be damaged.
USIM2_RST	85	DO	USIM2 card reset	Connected with pin 78 (CAM_SPI_CLK) internally. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.
USIM2_CLK	84	DO	USIM2 card clock	Connected with pin 115 (CAM_PWDN) internally. 1.8 V power domain is required for USIM2. Otherwise, this interface will be damaged.

The module supports USIM1 card hot-plug via the USIM1_DET, and both high-level and low-level detections are supported. Hot-plug function is disabled by default and you can use **AT+QSIMDET** to configure this function. See **document [2]** for more details. Only USIM1 supports hot-plug detection.

The following figure illustrates a reference design for USIM1 card interface with an 8-pin USIM card connector.

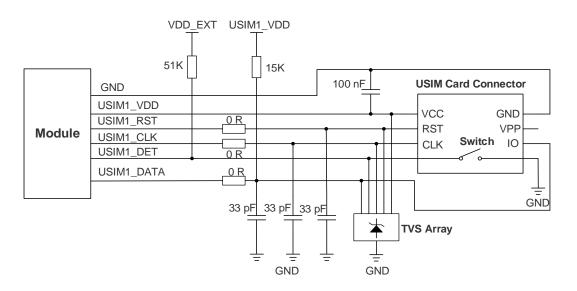


Figure 23: Reference Design of USIM1 Interface with an 8-pin USIM Card Connector

If the function of USIM1 card hot-plug is not needed, keep USIM1_DET disconnected. A reference design for USIM interfaces with a 6-pin USIM card connector is illustrated in the following figure.

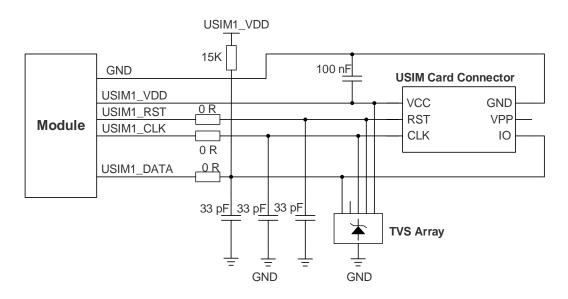
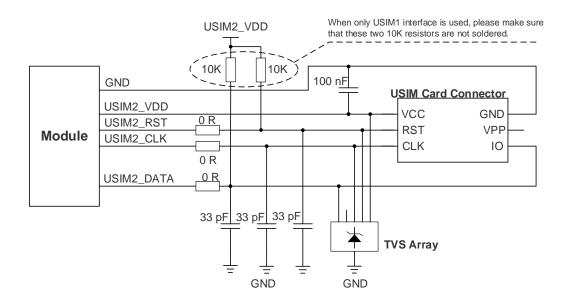



Figure 24: Reference Design of USIM1 Interface with a 6-pin USIM Card Connector

Figure 25: Reference Design of USIM2 Interface with a 6-pin USIM Card Connector

To enhance the reliability and availability of the USIM cards in applications, follow the principles below in the USIM circuit design:

- Place the USIM card connector close to the module. Keep the trace length as short as possible and at most 200 mm.
- Route USIM card traces at the inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below. For signal traces, provide spacing from power supply traces, crystal-oscillators, magnetic devices, sensitive signals such as RF signals, analog signals, and noise signals generated by clock, DC-DC.
- Ensure the tracing between the USIM card connector and the module is short and wide. Keep the trace width of ground and USIM_VDD at least 0.5 mm to maintain the same electric potential.

- To avoid cross-talk between USIM_DATA and USIM_CLK, keep the traces away from each other and shield them with surrounded ground.
- To offer good ESD protection, it is recommended to add a TVS array of which parasitic capacitance should be less than 15 pF. Add 0 Ω resistors in series between the module and the USIM card connector to facilitate debugging. The 33 pF capacitors are used for filtering out RF interference. Additionally, keep the USIM peripheral circuit close to the USIM card connector.
- The pull-up resistor on USIM1_DATA trace, USIM2_DATA and USIM2_RST can improve anti-jamming capability when long layout trace and sensitive occasions are applied, and should be placed close to the USIM card connector.

4.4. UART

The module provides four UARTs.

Table 15: UART Information (Unit: bps)

UART Types	Supported Baud Rates	Default Baud Rates	Functions
Main UART	4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600	115200	 AT command communication data transmission RTS and CTS hardware flow control
Debug UART	115200, 3000000	3000000	Partial logs output
GNSS UART	921600	921600	GNSS data outputGNSS NMEA sentence output
GNSS debug UART	3000000	3000000	GNSS system logs output

Table 16: Pin Description of UART

Pin Name	Pin No.	I/O	Description	Comment
MAIN_CTS	36	DO	Clear to send signal from the module	Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	Connect to MCU's RTS. If unused, keep it open.
MAIN_RXD	34	DI	Main UART receive	
MAIN_DCD	38	DO	Main UART data carrier detect	If unused, keep them _ open.
MAIN_TXD	35	DO	Main UART transmit	_ •

MAIN_RI	39	DO	Main UART ring indication	
MAIN_DTR	30	DI	Main UART data terminal ready	-
DBG_RXD	22	DI	Debug UART receive	Test points must be
DBG_TXD	23	DO	Debug UART transmit	reserved.
GNSS_TXD 9	27	DO	GNSS UART transmit	Test points are recommended to be
GNSS_RXD ⁹	28	DI	GNSS UART receive	reserved.
GNSS_DBG_TXD ⁹	109	DO	GNSS debug UART transmit	Test points must be
GNSS_DBG_RXD ⁹	110	DI	GNSS debug UART receive	reserved.

The module provides 1.8 V UART interfaces. You can use a level-shifting chip between the module and MCU's UART if the MCU is equipped with a 3.3 V UART.

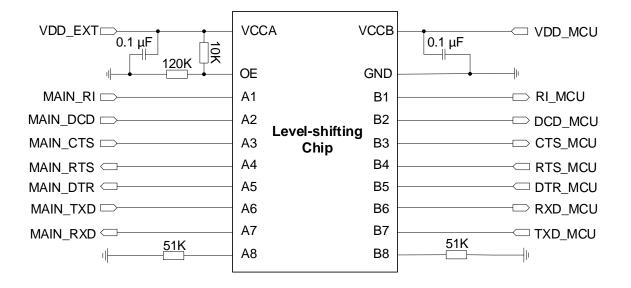
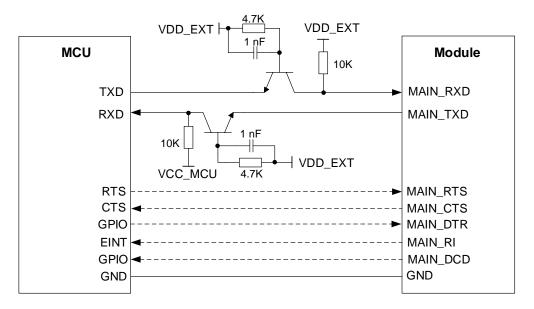



Figure 26: Reference Design of UART with Level-shifting Chip (Main UART)

Another example of level-shifting circuit is shown as below. For the design of circuits in dotted lines, see that shown in solid lines, but pay attention to the direction of the connection.

⁹ This pin is optional. If you need this function, please contact Quectel Technical Support.

Figure 27: Reference Design of UART with Transistor Level-shifting Circuit (Main UART)

- NOTE
- 1. Transistor circuit solution above is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module's CTS is connected to MCU's CTS, and the module's RTS is connected to MCU's RTS.
- 3. The level-shifting circuits (*Figure 26* and *Figure 27*) take the main UART as an example. The circuits of debug UART, GNSS UART and GNSS debug UART are connected in the same way as the main UART.
- 4. To increase the stability of UART communication, it is recommended to add UART hardware flow control design.

4.5. PCM and I2C Interfaces*

The module provides one Pulse Code Modulation (PCM) digital interface and one I2C interface.

Table 17: Pin Description	of PCM and I2C Interfaces
----------------------------------	---------------------------

Pin Name	Pin No.	I/O	Description	Comment
PCM_SYNC	5	DO	PCM data frame sync	
PCM_CLK	4	DO	PCM clock	If unused, keep them open.
PCM_DIN	6	DI	PCM data input	_

PCM_DOUT	Γ7	DO	PCM data output	
I2C_SCL	40	OD	I2C serial clock	External pull-up resistor is required.
I2C_SDA	41	OD	I2C serial data	If unused, keep them open.

The reference design is illustrated as follows.

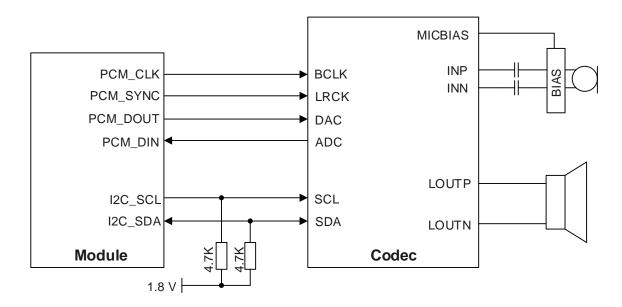


Figure 28: Reference Design of PCM and I2C Interfaces

NOTE

- 1. It is recommended to reserve RC circuits (R = 22 Ω , C = 22 pF) on the PCM signal traces, especially on the PCM_CLK pin.
- 2. The module can only be used as a master device in applications related to both the PCM interface and the I2C interface.

4.6. ADC Interfaces

The module provides two Analog-to-Digital Converter (ADC) interfaces. To improve the accuracy of ADC, surround the trace of ADC with ground.

Table 18: Pin Description of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
ADC0	24	AI	General-purpose ADC interface	 If unused, keep them open. 	
ADC1	2	AI	General-purpose ADC interface		

With **AT+QADC=<port>**, you can:

- AT+QADC=0: read the voltage value on ADC0
- AT+QADC=1: read the voltage value on ADC1

For more details about the AT command, see *document* [2].

Table 19: Characteristics of ADC Interfaces

Parameters	Min.	Тур.	Max.	Units
ADC0 input voltage range	0	-	1.2	V
ADC input resistance	0.26	-	0.75	MΩ
ADC resolution	-	12	-	bits

NOTE

- 1. The input voltage of every ADC interface should not exceed 1.2 V.
- 2. It is prohibited to directly supply any voltage to ADC Interfaces when the module is not powered by the VBAT.
- 3. It is recommended to use resistor divider circuit for ADC interface application. Resistance of the external resistor divider should not exceed 100 kΩ, and the divider resistor accuracy should not higher than 1 %, otherwise the measurement accuracy of ADC would be significantly reduced. It is recommended to reserve a 100 nF capacitor for the design.

4.7. Camera SPI*

The module provides one camera SPI supporting SPI dual-wire data transmission. USIM2 and Camera SPI cannot be used at the same time.

Pin Name	Pin No.	I/O	Description	Comment	
CAM_MCLK	95	DO	Master clock of the camera	If unused, keep it open.	
CAM_SPI_CLK	78	DI	Camera SPI clock	Connected with pin 85 (USIM2_RST) internally. If unused, keep it open.	
CAM_SPI_DATA0	97	DI	Camera SPI data bit 0	Connected with pin 86 (USIM2_DATA) internally. If unused, keep it open.	
CAM_SPI_DATA1	98	DI	Camera SPI data bit 1	If unused, keep it open.	
CAM_PWDN	115	DO	Power down of the camera	Connected with pin 84 (USIM2_CLK) internally. If unused, keep it open.	
CAM_VDD	94	PO	Camera analog power supply	If unused keep them open	
CAM_VDDIO	93	PO	Camera digital power supply	 If unused, keep them open. 	

Table 20: Pin Description of Camera SPI

4.8. GRFC Interfaces

The module provides two GRFC (generic RF control) interfaces for the control of external antenna tuners.

Table 21: Pin Description of GRFC Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
GRFC1	76	DO	Generic RF controller	If unused keep them enon	
GRFC2	77	DO	Generic RF controller	 If unused, keep them open. 	

4.9. Control Signals

Pin Name	Pin No.	I/O	Description	Comment
W_DISABLE#*	18	DI	Airplane mode control	_
PSM_IND*	1	DO	Indicate the module's power saving mode	lf unused, keep
PSM_INT*	96	DI	External interrupt; wake up the module from power saving mode	them open.
AP_READY*	19	DI	Application processor ready	_

Table 22: Pin Description of Control Signals

4.9.1. W_DISABLE#*

The module provides W_DISABLE# to enable or disable RF function. When the voltage level of W_DISABLE# is high, you can send **AT+CFUN=<fun>** to set the module's operating mode. For the details of this command, see *document [2]*. Driving W_DISABLE# low will set the module to airplane mode.

Table 23: W_DISABLE# AT Command Configuration Information

Level Status	AT Command	RF Function	Operating Mode
	AT+CFUN=1	Enabled	Full functionality mode
High level	AT+CFUN=0	Disabled	Minimum functionality mode
	AT+CFUN=4	Disabled	Airplane mode
Low level	AT+CFUN=0 AT+CFUN=1 AT+CFUN=4	Disabled	Airplane mode

4.10. Indication Signals

Table 24: Pin Description of Indication Signals

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicate the module's operation status	
NET_STATUS	21	DO	Indicate the module's network activity status	If unused, keep them open.
GNSS_PPS ¹⁰	51	DO	GNSS pulse per second output	•

4.10.1. Network Status Indication

The module provides one network status indication pin: the NET_STATUS for the module's network operation status indication, which can drive corresponding LEDs.

Table 25: Network Status Indication Pin Level and Module Network Status

Pin Name	NET_STATUS Level Status	Module Network Status
	Blink slowly (200 ms High/1800 ms Low)	Network searching
NET_STATUS	Blink slowly (1800 ms High/200 ms Low)	Idle
	Blink quickly (125 ms High/125 ms Low)	Data transmission is ongoing

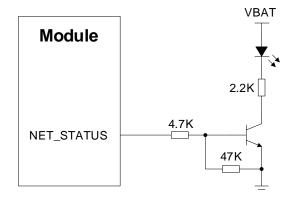


Figure 29: Reference Design of NET_STATUS Indication

¹⁰ This pin is optional. If you need this function, please contact Quectel Technical Support.

4.10.2. STATUS

The STATUS is used for indicating the module's operation status. It will output high level when the module is turned on.

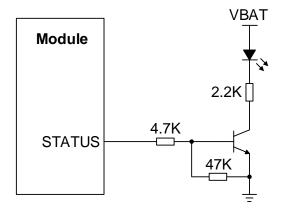


Figure 30: Reference Design of STATUS

4.10.3. MAIN_RI

AT+QCFG= "risignaltype", "physical" can be used to configure MAIN_RI behavior. No matter on which port a URC information is presented, the URC information will trigger the behavior of the MAIN_RI. For the details of **AT+QCFG**, see *document* [2].

NOTE

The **AT+QURCCFG** allows you to set the main UART, USB AT port or USB modem port as the URC information output port. The USB AT port is the URC output port by default. For more details about **AT+QURCCFG**, see *document* [2].

You can configure MAIN_RI behaviors flexibly. The default behaviors of the MAIN_RI are shown as below.

Table 26: MAIN_RI Level and Module Status

Module Status	MAIN_RI Level Status
Idle	High level
When a new URC information	MAIN_RI will output a low level for at least 120 ms. After this pin
returns	changes to a high level, the module starts to output data.

Indication behavior for MAIN_RI can be configured via AT+QCFG="urc/ri/ring".

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. LTE/Wi-Fi Scan Antenna Interface

5.1.1. Antenna Interface & Frequency Bands

Table 27: Pin Description of LTE/Wi-Fi Scan Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN ¹¹	60	AIO	Main antenna/Wi-Fi Scan antenna interface	50 Ω impedance.

NOTE

Wi-Fi Scan function shares the same antenna interface with the main antenna. These two antennas should use TDM (Time Division Multiplexing) and cannot be used simultaneously. Wi-Fi Scan only supports receiving and does not support transmitting.

Table 28: Operating Frequency of EG915Q-NA (Unit: MHz)

Operating Frequency	Transmit	Receive
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B12	699–716	729–746

¹¹ ANT_MAIN only supports passive antennas.

LTE-FDD B13	777–787	746–756
LTE-FDD B66	1710–1780	2110–2180

Table 29: Operating Frequency of EG915Q-AF (Unit: MHz)

Operating Frequency	Transmit	Receive
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B12	699–716	729–746
LTE-FDD B13	777–787	746–756
LTE-FDD B14	788-798	758-768
LTE-FDD B66	1710–1780	2110–2180
LTE-FDD B71	663-698	617-652

Table 30: Operating Frequency of EG915Q-JP (Unit: MHz)

Operating Frequency	Transmit	Receive
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B8	880–915	925–960
LTE-FDD B18	815–830	860–875
LTE-FDD B19	830–845	875–890
LTE-FDD B26	814–849	859–894
LTE-FDD B28	703-748	758–803

Table 31: Operating Frequency of EG916Q-GL (Unit: MHz)

Operating Frequency	Transmit	Receive
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B12	699–716	729–746
LTE-FDD B13	777–787	746–756
LTE-FDD B18	815–830	860–875
LTE-FDD B19	830–845	875–890
LTE-FDD B20	832–862	791–821
LTE-FDD B25	1850–1915	1930–1995
LTE-FDD B26	814–849	859–894
LTE-FDD B28	703–748	758–803
LTE-TDD B34	2010–2025	2010–2025
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B39	1880–1920	1880–1920
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2496–2690	2496–2690
LTE-FDD B66	1710–1780 2110–2180	

5.1.2. Tx Power

Table 32: RF Transmitting Power

Frequency Bands	Max.	Min.
LTE bands	23 dBm ±2 dB	< -39 dBm

5.1.3. Rx Sensitivity

Table 33: Conducted RF Receiver Sensitivity of EG915Q-NA (Unit: dBm)

Frequency Bands	Receiver Sensitivity (Typ.) 3GPP (SIMO)		
Frequency ballus	Primary		
LTE-FDD B2 (10 MHz)	-98 dBm	-94.3 dBm	
LTE-FDD B4 (10 MHz)	-98.5 dBm	-96.3 dBm	
LTE-FDD B5 (10 MHz)	-99 dBm	-94.3 dBm	
LTE-FDD B12 (10 MHz)	-98.5 dBm	-93.3 dBm	
LTE-FDD B13 (10 MHz)	-98.5dBm	-93.3 dBm	
LTE-FDD B66 (10 MHz)	-98.5 dBm	-95.8 dBm	

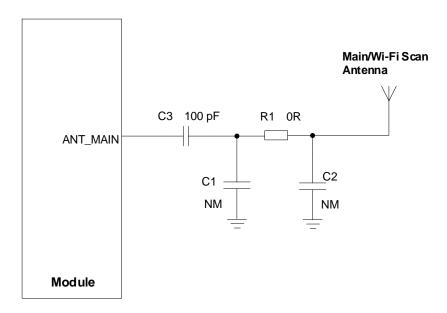
Table 34: Conducted RF Receiver Sensitivity of EG915Q-AF (Unit: dBm)

Frequency Bands	Receiver Sensitivity (Typ.)	/p.) 3GPP (SIMO)	
Frequency Banus	Primary	30FF (31110)	
LTE-FDD B2 (10 MHz)	-98 dBm	-94.3 dBm	
LTE-FDD B4 (10 MHz)	-98.5 dBm	-96.3 dBm	
LTE-FDD B5 (10 MHz)	-99 dBm	-94.3 dBm	
LTE-FDD B12 (10 MHz)	-98.5 dBm	-93.3 dBm	
LTE-FDD B13 (10 MHz)	-98.5 dBm	-93.3 dBm	
LTE-FDD B14 (10 MHz)	-98.5 dBm	-93.3 dBm	

LTE-FDD B66 (10 MHz)	-98.5 dBm	-95.8 dBm
LTE-FDD B71 (10 MHz)	-98 dBm	-93.5 dBm

Table 35: Conducted RF Receiver Sensitivity of EG915Q-JP (Unit: dBm)

Frequency Bands	Receiver Sensitivity (Typ.)	3GPP (SIMO)	
	Primary		
LTE-FDD B1 (10 MHz)	-99.4 dBm	-96.3 dBm	
LTE-FDD B3 (10 MHz)	-99.5 dBm	-93.3 dBm	
LTE-FDD B8 (10 MHz)	-99.0 dBm	-93.3 dBm	
LTE-FDD B18 (10 MHz)	-99.9 dBm	-96.3 dBm	
LTE-FDD B19 (10 MHz)	-100.1 dBm	-96.3 dBm	
LTE-FDD B26 (10 MHz)	-99.8 dBm	-93.8 dBm	
LTE-FDD B28 (10 MHz)	-98.8 dBm	-94.8 dBm	


Table 36: Conducted RF Receiver Sensitivity of EG916Q-GL (Unit: dBm)

Fraguency Bondo	Receiver Sensitivity (Typ.)	3GPP (SIMO)	
Frequency Bands	Primary		
LTE-FDD B1 (10 MHz)	-98.6 dBm	-96.3 dBm	
LTE-FDD B2 (10 MHz)	-99.4 dBm	-94.3 dBm	
LTE-FDD B3 (10 MHz)	-98.9 dBm	-93.3 dBm	
LTE-FDD B4 (10 MHz)	-98.6 dBm	-96.3 dBm	
LTE-FDD B5 (10 MHz)	-99.1 dBm	-94.3 dBm	
LTE-FDD B7 (10 MHz)	-97.4 dBm	-94.3 dBm	
LTE-FDD B8 (10 MHz)	-99.3 dBm	-93.3 dBm	
LTE-FDD B12 (10 MHz)	-99.5 dBm	-93.3 dBm	
LTE-FDD B13 (10 MHz)	-98.3 dBm	-93.3 dBm	

LTE-FDD B18 (10 MHz)	-99.3 dBm	-96.3 dBm
LTE-FDD B19 (10 MHz)	-99.1 dBm	-96.3 dBm
LTE-FDD B20 (10 MHz)	-99.8 dBm	-93.3 dBm
LTE-FDD B25 (10 MHz)	-99.4 dBm	-92.8 dBm
LTE-FDD B26 (10 MHz)	-98.9 dBm	-93.8 dBm
LTE-FDD B28 (10 MHz)	-98.6 dBm	-94.8 dBm
LTE-TDD B34 (10 MHz)	-99.2 dBm	-96.3 dBm
LTE-TDD B38 (10 MHz)	-97.6 dBm	-96.3 dBm
LTE-TDD B39 (10 MHz)	-99.8 dBm	-96.3 dBm
LTE-TDD B40 (10 MHz)	-98 dBm	-96.3 dBm
LTE-TDD B41 (10 MHz)	-97.7 dBm	-94.3 dBm
LTE-FDD B66 (10 MHz)	-98.6 dBm	-95.8 dBm

5.1.4. Reference Design

Figure 31: Reference Design of Main/Wi-Fi Scan Antenna

NOTE

- 1. Use a dual L-type matching circuit for the antenna interface for better cellular performance and for the ease of debugging.
- 2. Capacitors C1 and C2 are not mounted by default.
- 3. Place the dual L-type matching components (R1 & C1 & C2 & C3) to the antenna as close as possible.
- 4. Notes on C3:
 - 1) If there is DC power at the antenna ports, place capacitor on C3 to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to the debugging results.
 - 2) If there is no DC power in the peripheral design:
 - a) Do not reserve C3.
 - b) If C3 has already been reserved, it should be mounted with components, and it is recommended to use 0 Ω resistors. You can also match the component according to the debugging results.

5.2. GNSS (Optional)

5.2.1. Antenna Interface & Frequency Bands

The GNSS part of the module supports GPS, GLONASS, BDS, Galileo, and QZSS systems.

Table 37: Pin Description of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	AI	GNSS antenna interface	50 Ω impedance.

Table 38: GNSS Frequency (Unit: MHz)

GNSS Constellation Type	Frequency
GPS	1575.42 ±1.023 (L1)
GLONASS	1597.5–1605.8 (L1)
BDS	1561.098 ±2.046 (B1I)
Galileo	1575.42 ±2.046 (E1)

QZSS

1575.42 ±1.023 (L1)

5.2.2. GNSS Performance

Table 39: GNSS Performance of EG915Q Series

Parameter	Description	Conditions	Тур.	Unit	
Sensitivity	Acquisition	_	-145		
	Reacquisition	Autonomous	-157	dBm	
	Tracking	-	-160	-	
TTFF	Cold start @ open alw	Autonomous	27.43		
	Cold start @ open sky	AGPS enabled	5.6		
	Warm start @ open sky	Autonomous	27.37	- S	
	Hot start @ open sky	Autonomous	2.56		
Accuracy	CEP-50	Autonomous @ open sky	2.5	m	

Table 40: GNSS Performance of EG916Q-GL

Parameter	Description	Conditions	Тур.	Unit
Sensitivity	Acquisition	_	-148	
	Reacquisition	Autonomous	-160	dBm
	Tracking		-166	
TTFF	Cold start @ open sky	Autonomous	24.96	_
		AGPS enabled	11.3	_ 0
	Warm start @ open sky	Autonomous	24.36	— S
	Hot start @ open sky	Autonomous	2.22	
Accuracy	CEP-50	Autonomous @ open sky	2.5	m

NOTE

- 1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

5.2.3. Reference Design

In any case, it is recommended to use a passive antenna. However, if an active antenna is needed in your application, it is recommended to reserve a π -type attenuation circuit and use a high-performance LDO in the power system design.

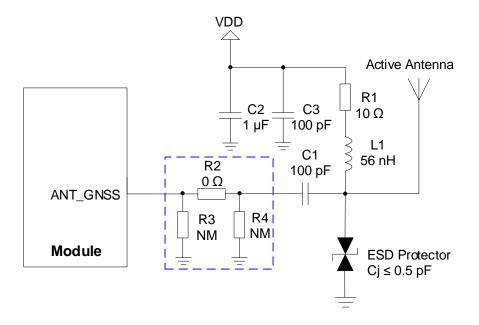


Figure 32: Reference Design of GNSS Antenna

NOTE

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.
- 3. Notes on C1:
 - If there is DC power at the antenna ports, place capacitor on C1 to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to the debugging results.
 - 2) If there is no DC power in the peripheral design:

- a) Do not reserve C1.
- b) If C1 has already been reserved, it should be mounted with components, and it is recommended to use 0 Ω resistors. You can also match the component according to the debugging results.

5.3. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

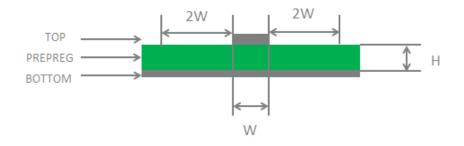


Figure 33: Microstrip Design on a 2-layer PCB

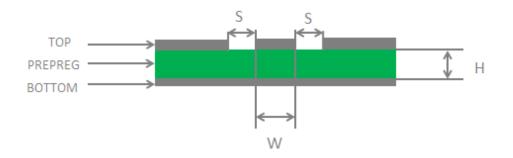


Figure 34: Coplanar Waveguide Design on a 2-layer PCB

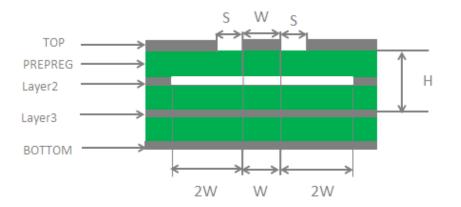


Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

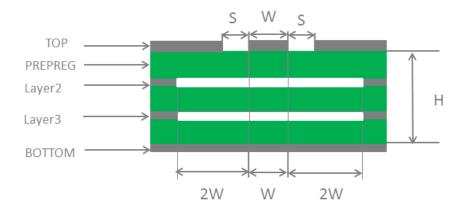


Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces (2 × W).
 Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [3].

5.4. Antenna Design Requirements

Table 41: Requirements for Antenna Design

Antenna Types	Requirements		
	Frequency range: 1559–1609 MHz		
	 Polarization: RHCP or linear VSWP: < 2 (Typ.) 		
	• VSWR: ≤ 2 (Typ.)		
GNSS (Optional)	For passive antenna usage:		
	 Passive antenna gain: > 0 dBi 		
	For active antenna usage:		
	 Active antenna noise figure: < 1.5 dB 		
	 Active antenna embedded LNA gain: < 17 dB 		
	● VSWR: ≤ 2		
	• Efficiency: > 30 %		
	• Gain: 1 dBi		
	 Max. input power: 50 W 		
Cellular/Wi-Fi Scan	 Input impedance: 50 Ω 		
Cellular/WI-FI Scall	Vertical polarization		
	Cable insertion loss:		
	< 1 dB: LB (<1 GHz)		
	< 1.5 dB: MB (1–2.3 GHz)		
	< 2 dB: HB (> 2.3 GHz)		

NOTE It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of

active antenna may generate harmonics which will affect the GNSS performance.

5.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by Hirose.

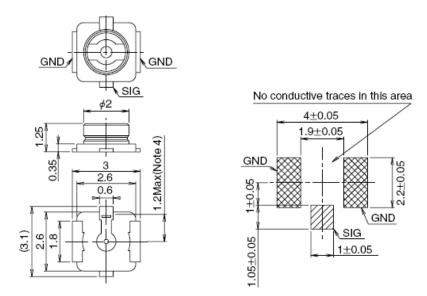


Figure 37: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT connector.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088	
Part No.						
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)	
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable	
Weight (mg)	53.7	59.1	34.8	45.5	71.7	
RoHS			YES			

Figure 38: Specifications of Mated Plugs

The following figure describes the space factor of mated connectors.

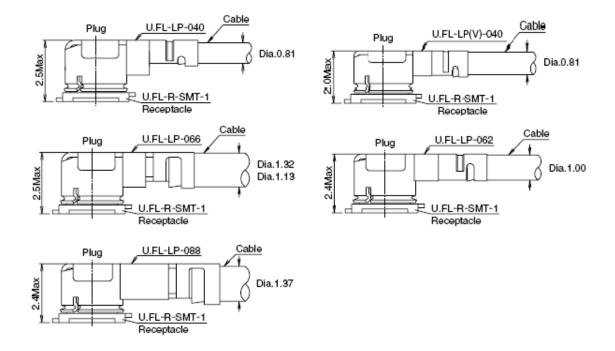


Figure 39: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit <u>http://www.hirose.com.</u>

6 Electrical Characteristics and Reliability

6.1. Absolute Maximum Ratings

Table 42: Absolute Maximum Ratings

Parameters	Min.	Max.	Unit
Voltage at VBAT_RF & VBAT_BB	-0.3	5	V
Voltage at USB_VBUS	-0.3	5.25	V
Voltage at GNSS_VBCKP	-0.3	3.63	V
Voltage at digital pins	-0.3	2.3	V

6.2. Power Supply Ratings

Table 43: Power Supply Ratings

Parameters	Descriptions	Conditions	Min.	Тур.	Max.	Units
VBAT	VBAT_BB & VBAT_RF	The actual input voltages must be kept	3.3	3.8	4.3	V
GNSS_ VBCKP	Power supply for GNSS RTC	between the minimum and maximum values.	1.9	3.3	3.6	V
I _{VBAT}	Peak power consumption	At maximum power control level	-	-	1.0	А
USB_VBUS	USB connection detection	-	3.0	5.0	5.25	V

6.3. Power Consumption

Table 44: Power Consumption of EG915Q-NA LTE Part (GNSS Part Off)

Description	Conditions	Тур.	Units
OFF state	Power down	0.4	μΑ
	AT+CFUN=0 (USB disconnected)	54	μΑ
	AT+CFUN=4 (USB disconnected)	130	μΑ
	LTE-FDD @ PF = 32 (USB disconnected)	1.24	mA
Sleep state	LTE-FDD @ PF = 64 (USB disconnected)	0.68	mA
	LTE-FDD @ PF = 128 (USB disconnected)	0.41	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.3	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	4.55	mA
Iule state	LTE-FDD @ PF = 64 (USB connected)	25.31	mA
	LTE-FDD B2	629	mA
	LTE-FDD B4	570	mA
LTE data transmission	LTE-FDD B5	544	mA
	LTE-FDD B12	571	mA
	LTE-FDD B13	657	mA
	LTE-FDD B66	543	mA

Table 45: Power Consumption of EG915Q-AF LTE Part (GNSS Part Off)

Description	Conditions	Тур.	Units
OFF state	Power down	0.5	μΑ
	AT+CFUN=0 (USB disconnected)	61	μΑ
Sleep state	AT+CFUN=4 (USB disconnected)	139	μΑ

	LTE-FDD @ PF = 32 (USB disconnected)	1.12	mA
	LTE-FDD @ PF = 64 (USB disconnected)	0.61	mA
	LTE-FDD @ PF = 128 (USB disconnected)	0.35	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.24	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	4.31	mA
	LTE-FDD @ PF = 64 (USB connected)	24.75	mA
	LTE-FDD B2	629	mA
	LTE-FDD B4	570	mA
	LTE-FDD B5	544	mA
LTE data transmission	LTE-FDD B12	571	mA
LIE data transmission	LTE-FDD B13	606	mA
	LTE-FDD B14	548	mA
	LTE-FDD B66	543	mA
	LTE-FDD B71	584	mA

Table 46: Power Consumption of EG915Q-JP LTE Part (GNSS Part Off)

Description	Conditions	Тур.	Units
OFF state	Power down	0.5	μA
Sleep state	AT+CFUN=0 (USB disconnected)	59	μΑ
	AT+CFUN=4 (USB disconnected)	140	μΑ
	LTE-FDD @ PF = 32 (USB disconnected)	1.29	mA
	LTE-FDD @ PF = 64 (USB disconnected)	0.71	mA
	LTE-FDD @ PF = 128 (USB disconnected)	0.43	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.32	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	4.34	mA

		LTE-FDD @ PF = 64 (USB connected)	24.77	mA
LTE data transmission	LTE-FDD B1	607	mA	
	LTE-FDD B3	634	mA	
	LTE-FDD B8	645	mA	
	LTE-FDD B18	473	mA	
	LTE-FDD B19	486	mA	
	LTE-FDD B26	489	mA	
	LTE-FDD B28	559	mA	

Table 47: Power Consumption of EG916Q-GL LTE Part (GNSS Part Off)

Description	Conditions	Тур.	Units
OFF state	Power down	0.5	μΑ
	AT+CFUN=0 (USB disconnected)	54	μΑ
	AT+CFUN=4 (USB disconnected)	135	μA
	LTE-FDD @ PF = 32 (USB disconnected)	1.23	mA
	LTE-FDD @ PF = 64 (USB disconnected)	0.68	mA
Sloop state	LTE-FDD @ PF = 128 (USB disconnected)	0.41	mA
Sleep state	LTE-FDD @ PF = 256 (USB disconnected)	0.31	mA
	LTE-TDD @ PF = 32 (USB disconnected)	1.27	mA
	LTE-TDD @ PF = 64 (USB disconnected)	0.70	mA
	LTE-TDD @ PF = 128 (USB disconnected)	0.42	mA
	LTE-TDD @ PF = 256 (USB disconnected)	0.32	mA
	LTE-FDD @ PF = 64 (USB disconnected)	4.56	mA
Idle state	LTE-FDD @ PF = 64 (USB connected)	25.80	mA
	LTE-TDD @ PF = 64 (USB disconnected)	4.58	mA

	LTE-TDD @ PF = 64 (USB connected)	25.51	mA
	LTE-FDD B1	616.3	mA
	LTE-FDD B2	529.6	mA
	LTE-FDD B3	630.0	mA
	LTE-FDD B4	572.3	mA
	LTE-FDD B5	506.0	mA
	LTE-FDD B7	722.3	mA
	LTE-FDD B8	581.2	mA
	LTE-FDD B12	520.1	mA
	LTE-FDD B13	559.8	mA
	LTE-FDD B18	480.0	mA
LTE data transmission	LTE-FDD B19	474.9	mA
	LTE-FDD B20	550.9	mA
	LTE-FDD B25	546.5	mA
	LTE-FDD B26	493.8	mA
	LTE-FDD B28	580.5	mA
	LTE-TDD B34	246.8	mA
	LTE-TDD B38	258.6	mA
	LTE-TDD B39	249.8	mA
	LTE-TDD B40	216.3	mA
	LTE-TDD B41	259.46	mA
	LTE-FDD B66	574.4	mA

6.4. Digital I/O Characteristics

Table 48: VDD_EXT I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V _{IH}	High-level input voltage	1.2	2
V _{IL}	Low-level input voltage	-0.3	0.6
V _{OH}	High-level output voltage	1.35	-
V _{OL}	Low-level output voltage	-	0.45

Table 49: USIM Low-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
VIH	High-level input voltage	1.2	-
VIL	Low-level input voltage	-	0.6
V _{OH}	High-level output voltage	1.35	-
V _{OL}	Low-level output voltage	-	0.45

Table 50: USIM High-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
VIH	High-level input voltage	1.95	-
V _{IL}	Low-level input voltage	-	1.0
V _{OH}	High-level output voltage	2.55	-
V _{OL}	Low-level output voltage	-	0.45

6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 51: ESD Characteristics	(Temperature: 25–30 °C	Humidity: 40 +5 %: Unit: kV)

Test Points	Contact Discharge	Air Discharge
VBAT & GND	±8	±12
Antenna interface	±5	±10
Other interfaces	±0.5	±1

6.6. Operating and Storage Temperatures

Table 52: Operating and Storage Temperatures (Unit: °C)

Parameters	Min.	Тур.	Max.
Normal Operating Temperature ¹²	-35	+25	+75
Extended Operating Temperature ¹³	-40	-	+85
Storage Temperature	-40	-	+90

¹² Within this range, the module's indicators comply with 3GPP specification requirements.

¹³ Within this range, the module retains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as P_{out}, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

7.1.1. Mechanical Dimensions of EG915Q Series

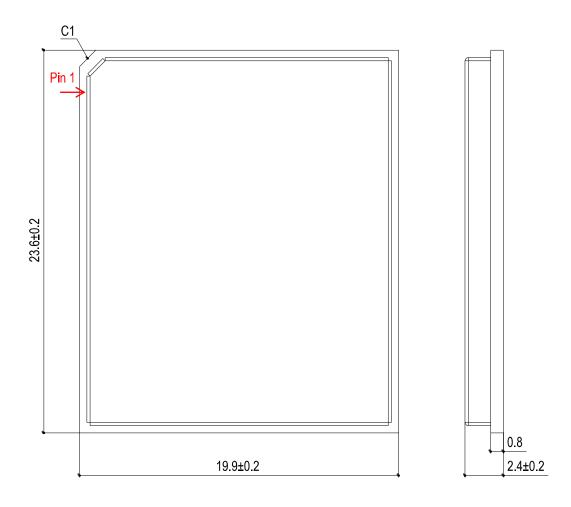


Figure 40: EG915Q Series Top and Side Dimensions (Unit: mm)

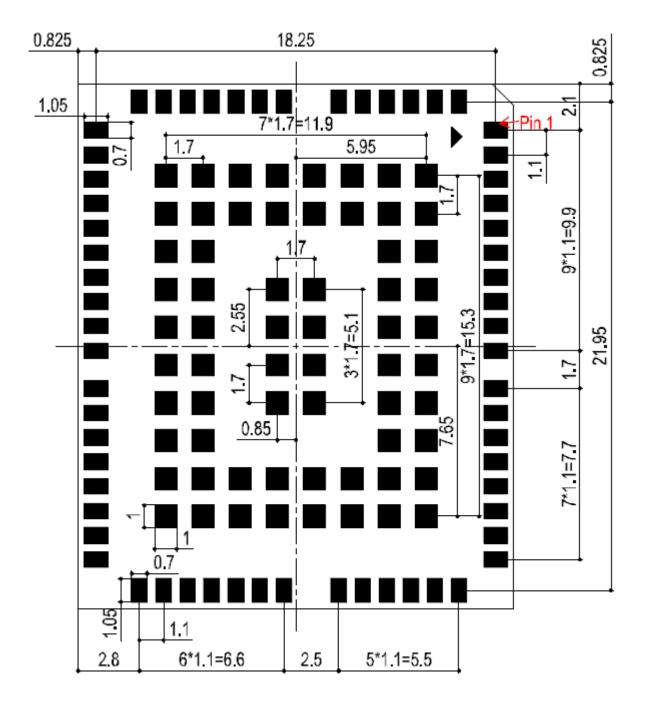


Figure 41: EG915Q Series Bottom Dimension (Bottom View, Unit: mm)

NOTE

The module's coplanarity standard: ≤ 0.13 mm.

7.1.2. Mechanical Dimensions of EG916Q-GL

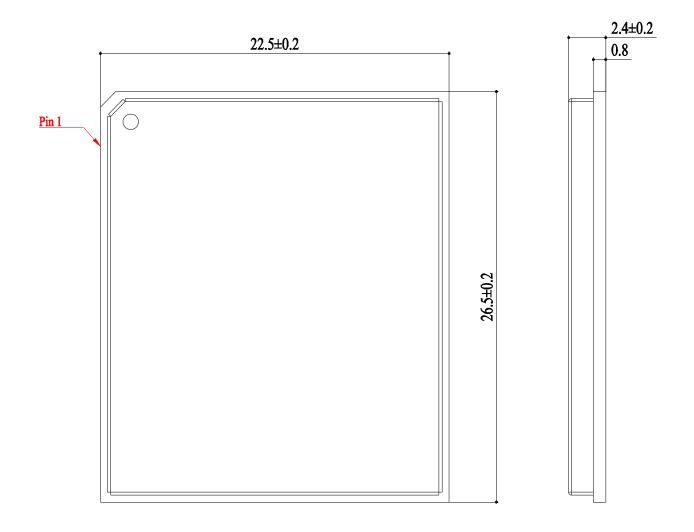


Figure 42: EG916Q-GL Top and Side Dimensions (Unit: mm)

Figure 43: EG916Q-GL Bottom Dimension (Bottom View, Unit: mm)

NOTE

The module's coplanarity standard: ≤ 0.13 mm.

7.2. Recommended Footprint

7.2.1. Recommended Footprint of EG915Q Series

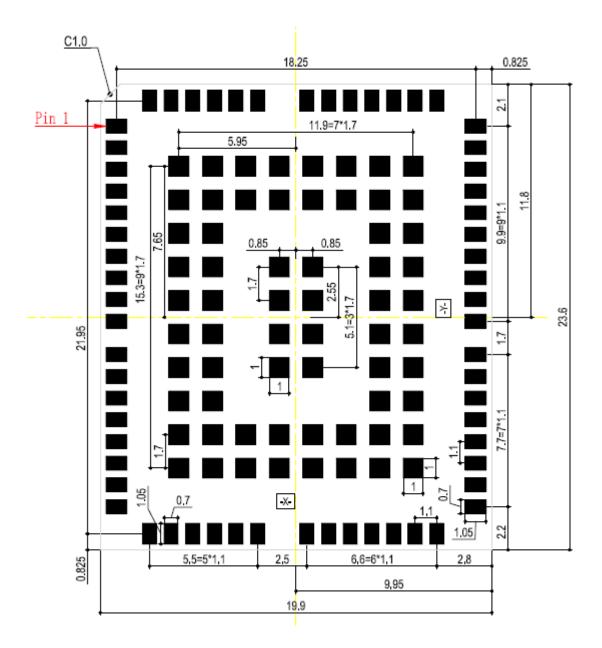


Figure 44: EG915Q Series Recommended Footprint (Unit: mm)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.2.2. Recommended Footprint of EG916Q-GL

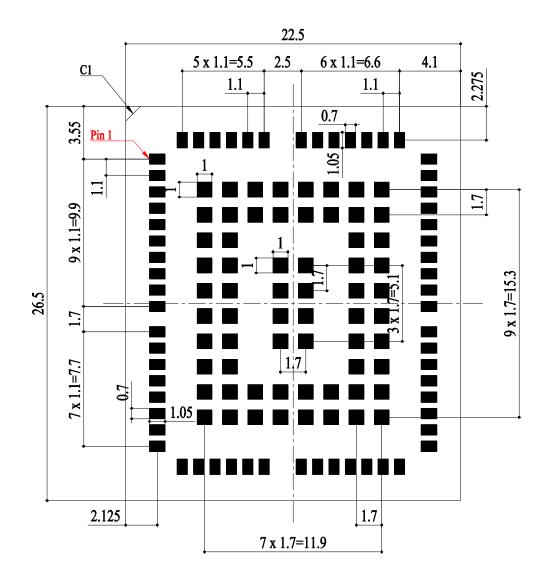


Figure 45: EG916Q-GL Recommended Footprint (Unit: mm)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

7.3.1. Top and Bottom Views of EG915Q Series

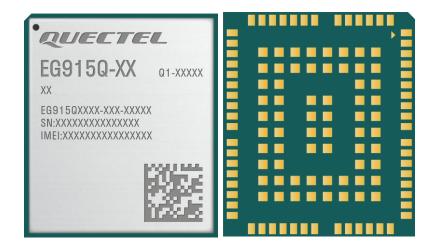


Figure 46: EG915Q Series Top and Bottom Views

7.3.2. Top and Bottom Views of EG916Q-GL

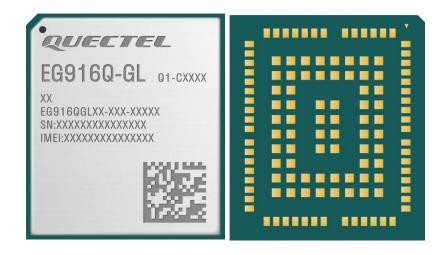


Figure 47: EG916Q-GL Top and Bottom Views

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ¹⁴ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 24 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

¹⁴ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [4]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

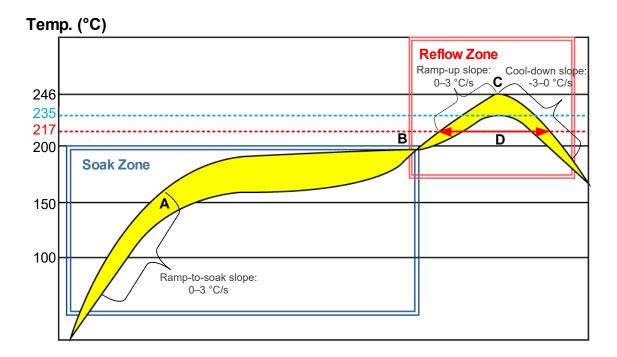


Figure 48: Recommended Reflow Soldering Thermal Profile

Table 53: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217°C)	40–70 s
Max temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, never wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol and trichloroethylene. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do not use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
- 7. Corrosive gases may corrode the electronic components inside the module, affecting their reliability and performance, and potentially leading to a shortened service life that fails to meet the designed lifespan. Therefore, do not store or use unprotected modules in environments containing corrosive gases such as hydrogen sulfide, sulfur dioxide, chlorine, and ammonia.
- 8. Due to the complexity of the SMT process, contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective wave soldering, ultrasonic

soldering) that is not mentioned in *document [5]*.

8.3. Packaging Specification

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:



Figure 49: Carrier Tape Dimension Drawing (Unit: mm)

Module Name	W	Р	т	A0	B0	K0	K1	F	Е
EG915Q Series	44	32	0.35	20.2	24	3.15	6.65	20.2	1.75
EG916Q-GL	44	32	0.35	22.8	26.8	3.1	6.9	20.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

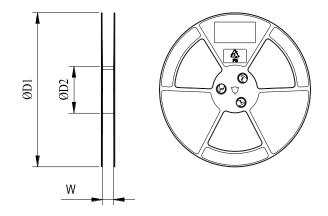
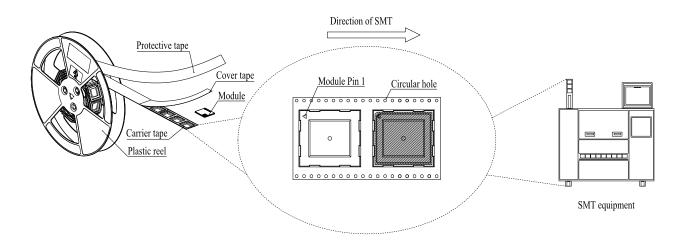
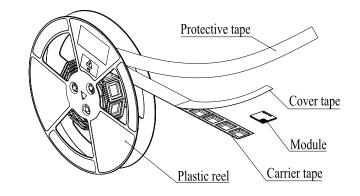
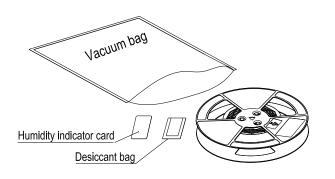



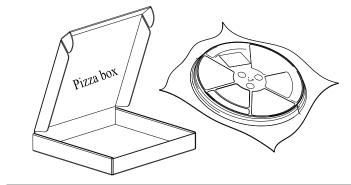
Figure 50: Plastic Reel Dimension Drawing

Table 55: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5


8.3.3. Mounting Direction




8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 250 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

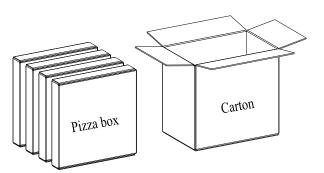


Figure 52: Packaging Process

9 Appendix References

Table 56: Related Documents

Document Name

- [1] Quectel_UMTS<E_EVB_User_Guide
- [2] Quectel_EG800Q&EG91xQ_Series_AT_Commands_Manual
- [3] Quectel_RF_Layout_Application_Note
- [4] Quectel_Module_Stencil_Design_Requirements
- [5] Quectel_Module_SMT_Application_Note

Table 57: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
ADC	Analog-to-Digital Converter
bps	Bits Per Second
СНАР	Challenge Handshake Authentication Protocol
CMUX	Connection MUX
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over the Air
DL	Downlink
DRX	Discontinuous Reception
DSSS	direct-sequence spread spectrum
DTR	Data Terminal Ready

ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
FILE	File Protocol
FTP	File Transfer Protocol
FTPS	FTP over SSL
GRFC	General RF Control
НВ	High Band
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
12C	Inter-Integrated Circuit
I/O	Input/Output
IMT-2000	International Mobile Telecommunications 2000
LB	Low Band
LED	Light Emitting Diode
LGA	Land Grid Array
LTE	Long Term Evolution
MB	Middle Band
MCU	Microcontroller Unit
МО	Mobile Originated
MQTT	Message Queuing Telemetry Transport
MT	Mobile Terminated
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol
PAP	Password Authentication Protocol
PCB	Printed Circuit Board

PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PING	Packet Internet Groper
PPP	Point-to-Point Protocol
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RI	Ring Indicator
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request To Send
Rx	Receive
SMD	Surface Mount Device
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SPI	Serial Peripheral Interface
SSL	Secure Sockets Layer
ТСР	Transmission Control Protocol
TVS	Transient Voltage Suppressor
Тх	Transmit
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code

USB	Universal Serial Bus
USIM	Universal Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
VIH	High-level input voltage
VIL	Low-level input voltage
V _{OH}	High-level output voltage
V _{OL}	Low-level output voltage
Vmax	Maximum Voltage
Vnom	Nominal Voltage
Vmin	Minimum Voltage
V _{IL} max	Maximum Low-level Input Voltage
V _{RWM}	Working Peak Reverse Voltage
VSWR	Voltage Standing Wave Ratio