

EG800Q SeriesHardware Design

LTE Standard Module Series

Version: 1.2

Date: 2024-09-13

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2024. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description	
-	2022-08-05	Chan CHEN/ Gary WANG	Creation of the document	
1.0	2023-02-07	Maffie ZHANG/ Emma WU	First official release	
1.1	2023-08-02	Maffie ZHANG/ Emma WU/ Lem JIN/ Sean FANG	 Added an applicable module EG800Q-NA. Added the information about Wi-Fi scan function (Table 3 & Figure 1). Updated the USB serial driver; Added the baud rates and functions of auxiliary UART; Updated the maximum category supported by LTE (Table 4). Updated the DC characteristics of STATUS, NET_STATUS, USIM_DET, MAIN_DCD, MAIN_RI and MAIN_DTR; Added the DC characteristics of PSM_IND and PSM_INT (Table 6). Added the characteristics of WAKEUP, AGPIO and AGPIOWU pins (Table 7). Added the baud rates and functions of auxiliary UART; Added the notifications of the connection between the module' UART and the external device (Chapter 4.3). Updated the note of the ADC design (Chapter 4.6). Updated the digital I/O characteristics (Chapter 6.4). Added the mounting direction (Chapter 8.3.3). 	
1.2	2024-09-13	Fanny CHEN/ Emma WU/	 Updated the information of Wi-Fi Scan. Updated the current that is provided to module from 	

Sean FANG

- 2.0 A to 1.5 A (Table 6 & Chapter 3.4.2)
- 3. Updated the I_Omax of USIM_VDD (Table 6).
- 4. Updated the default baud rates of debug UART (Table 14).
- 5. Added a note on UART hardware flow control design (Chapter 4.3).
- 6. Updated the MAIN_RI level status when a new URC information returns (Table 23).
- 7. Updated the antenna reference design (Chapter 5.1.4).
- 8. Updated the typical value and maximum value of I_{VBAT} (Table 31).
- 9. Updated the module's power consumption in sleep state (Table 32 & 33).
- 10. Updated electrostatics discharge characteristics (Table 36).
- 11. Updated the module's coplanarity requirement (Chapter 7.1).
- Added a note specifying that mercury-containing materials and corrosive gases should be avoided for module processing;
 - Added a note prohibiting storage or use of unprotected modules in environments containing corrosive gases. (Chapter 8.2).

Contents

Sa	tety Informat	ion	3
Ab	out the Docu	ıment	4
Со	ntents		6
Ta	ble Index		8
Fig	jure Index		10
1	Introductio	n	12
		cial Mark	
2	Product Ov	verview	13
	2.1. Fred	quency Bands and Functions	13
	2.2. Key	Features	14
	2.3. Bloc	ck Diagram	16
	2.4. Pin	Assignment	17
	2.5. Pin	Description	18
	2.6. EVE	3 Kit	22
3	Operating (Characteristics	23
	3.1. Ope	erating Modes	23
	3.2. Slee	ep Mode	23
	3.2.1.	UART Application Scenario	24
	3.2.2.	USB Application Scenario	25
	3.2	2.2.1. USB Application with USB Suspend/Resume & Remote Wakeup Function	25
	3.2	2.2.2. USB Application with USB Suspend/Resume and MAIN_RI Function	26
	3.2	2.2.3. USB Application without USB Suspend Function	26
	3.3. Airp	lane Mode	27
	3.4. Pow	ver Supply	28
	3.4.1.	Power Supply Pins	28
	3.4.2.	Power Supply Reference Design	28
	3.4.3.	Voltage Stability Requirements	28
	3.5. Turr	n On	29
	3.5.1.	Turn On with PWRKEY	29
	3.6. Turr	n Off	31
	3.6.1.	Turn Off with PWRKEY	31
	3.6.2.	Turn Off with AT Command	32
	3.7. Res	et	32
4	Application	n Interfaces	35
	4.1. USE	3 Interface	35
	4.2. USE	3_BOOT	36
	4.3. UAF	RT Interfaces	38
	4.4. USI	M Interface	40
	4.5. PC	VI* and I2C* Interfaces	42

	4.6. AD0	C Interfaces	43
	4.7. PSN	M_IND* & PSM_INT*	44
	4.8. Indi	ication Signals	44
	4.8.1.	Network Status Indication	45
	4.8.2.	STATUS	45
	4.8.3.	MAIN_RI	46
5	RF Specific	cations	47
	5.1. LTE	E/Wi-Fi Scan Antenna Interface	47
	5.1.1.	Antenna Interface & Frequency Bands	47
	5.1.2.	Tx Power	48
	5.1.3.	Rx Sensitivity	48
	5.1.4.	Reference Design	49
	5.2. RF	Routing Guidelines	50
	5.3. Anto	enna Design Requirements	52
	5.4. RF	Connector Recommendation	52
6	Electrical C	Characteristics & Reliability	54
	6.1. Abs	solute Maximum Ratings	54
	6.2. Pov	wer Supply Ratings	54
	6.3. Pov	wer Consumption	55
	6.4. Digi	ital I/O Characteristics	56
	6.5. ESI	D Protection	57
	6.6. Ope	erating and Storage Temperatures	58
7	Mechanica	al Information	59
	7.1. Med	chanical Dimensions	59
	7.2. Red	commended Footprint	61
	7.3. Top	and Bottom Views	62
8	Storage, M	lanufacturing & Packaging	63
	8.1. Sto	rage Conditions	63
	8.2. Mar	nufacturing and Soldering	64
	8.3. Pac	ckaging Specifications	66
	8.3.1.	Carrier Tape	66
	8.3.2.	Plastic Reel	66
	8.3.3.	Mounting Direction	67
	8.3.4.	Packaging Process	68
9	Annendix F	References	69

Table Index

Table 1: Special Mark	12
Table 2: Basic Information	
Table 3: Frequency Bands and Functions Supported by EG800Q Series	
Table 4: Key Features	
Table 5: I/O Parameters Definition	
Table 6: Pin Description	
Table 7: WAKEUP & AGPIO & AGPIOWU Pin Characteristics	
Table 8: Overview of Operating Modes	23
Table 9: Pin Definition of Power Supply	
Table 10: Pin Definition of PWRKEY	29
Table 11: Pin Definition of RESET_N	
Table 12: Pin Definition of USB Interface	35
Table 13: Pin Definition of USB_BOOT	36
Table 14: UART Information	38
Table 15: Pin Definition of UART Interfaces	38
Table 16: Pin Definition of USIM Interface	40
Table 17: Pin Definition of PCM and I2C Interfaces	42
Table 18: Pin Definition of ADC Interfaces	43
Table 19: ADC Interface Features	44
Table 20: Pin Definition of PSM_IND and PSM_INT	44
Table 21: Pin Definition of Indication Signals	44
Table 22: Network Connection Status/Activity Indicated by NET_STATUS Pin	45
Table 23: Behaviors of MAIN_RI	46
Table 24: Pin Description of LTE/Wi-Fi Scan Antenna Interface	47
Table 25: Operating Frequency	47
Table 26: Tx Power	48
Table 27: EG800Q-EU Conducted RF Receiver Sensitivity	48
Table 28: EG800Q-NA Conducted RF Receiver Sensitivity	49
Table 29: Antenna Design Requirements	52
Table 30: Absolute Maximum Ratings	54
Table 31: Module Power Supply Ratings	54
Table 32: EG800Q-EU Power Consumption	55
Table 33: EG800Q-NA Power Consumption	55
Table 34: VDD_EXT I/O Requirements	56
Table 35: USIM Low/High-voltage I/O Requirements	57
Table 36: Electrostatics Discharge Characteristics (Temperature: 25,-30 °C, Humidity: 40 ±5 %)	57
Table 37: Operating and Storage Temperatures	58
Table 38: Recommended Thermal Profile Parameters	65
Table 39: Carrier Tape Dimension Table (Unit: mm)	66
Table 40: Plastic Reel Dimension Table (Unit: mm)	
Table 41: Related Documents	69

Figure Index

Figure 1: Block Diagram	16
Figure 2: Pin Assignment (Top View)	17
Figure 3: Power Consumption During Sleep Mode	24
Figure 4: Sleep Mode Application via UART	25
Figure 5: Sleep Mode Application with USB Remote Wakeup	26
Figure 6: Sleep Mode Application with MAIN_RI	26
Figure 7: Sleep Mode Application without USB Suspend	27
Figure 8: Power Supply Reference Design	28
Figure 9: Power Supply Reference Design	29
Figure 10: Reference Design of Turning on the Module with Driving Circuit	30
Figure 11: Reference Design of Turning on Module with Keystroke	30
Figure 12: Power-up Timing	31
Figure 13: Timing of Turn-off with PWRKEY	32
Figure 14: Reference Design of RESET_N with Driving Circuit	33
Figure 15: Reference Design of PWRKEY with Driving Circuit	33
Figure 16: Reset Timing	
Figure 17: Reference Circuit of USB Interface	35
Figure 18: Reference Design of USB_BOOT Interface	37
Figure 19: Timing of Entering Forced Download Mode	
Figure 20: Reference Design of UART with Voltage-Level Translator (Main UART)	39
Figure 21: Reference Design of UART with Transistor Level-Shifting Circuit (Main UART)	39
Figure 22: Reference Design of USIM Interface with an 8-Pin USIM Card Connector	41
Figure 23: Reference Design of USIM Interface with a 6-Pin USIM Card Connector	41
Figure 24: Reference Circuit of PCM and I2C Interfaces	
Figure 25: Reference Design of NET_STATUS	45
Figure 26: Reference Design of STATUS	46
Figure 27: Reference Design of RF Antenna Interfaces	
Figure 28: Microstrip Design on a 2-layer PCB	50
Figure 29: Coplanar Waveguide Design on a 2-layer PCB	50
Figure 30: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	51
Figure 31: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	51
Figure 32: Receptacle Dimensions (Unit: mm)	52
Figure 33: Specifications of Mated Plugs	53
Figure 34: Space Factor of Mated Connectors (Unit: mm)	53
Figure 35: Module Top and Side Dimensions (Unit: mm)	59
Figure 36: Bottom Dimensions (Bottom View, Unit: mm)	
Figure 37: Recommended Footprint (Unit: mm)	61
Figure 38: Module Top and Bottom Views	
Figure 39: Recommended Reflow Soldering Thermal Profile	64
Figure 40: Carrier Tape Dimension Drawing (Unit: mm)	
Figure 41: Plastic Reel Dimension Drawing	67

Figure 42: Mounting Direction	67
Figure 43: Packaging Process	68

1 Introduction

This document defines EG800Q series module and describes its air interface and hardware interfaces, which are connected with your applications.

This document provides a quick insight into EG800Q series module interface specifications, electrical and mechanical details, as well as other related information of the module. Coupled with application notes and user guides, the document makes it easy to design and set up mobile applications with the module.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

2 Product Overview

The module is an SMD type module.

Table 2: Basic Information

LGA
109
$(17.7 \pm 0.2) \text{ mm} \times (15.8 \pm 0.2 \text{ mm}) \times (2.4 \pm 0.2) \text{ mm}$
approx. 2.0 g
LTE/Wi-Fi Scan

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions Supported by EG800Q Series

Mode	EG800Q-EU	EG800Q-NA
LTE-FDD	B1/B3/B5/B7/B8/B20/B28	B2/B4/B5/B12/B13/B66
Wi-Fi Scan	802.11b/g/n with 2.4G DSSS beacon	802.11b/g/n with 2.4G DSSS beacon

NOTE

The Wi-Fi scan function utilizes the same antenna interface as the main antenna. Due to this shared interface, Time Division Multiplexing (TDM) is employed since the two functions cannot be used simultaneously. Wi-Fi Scan functionality only supports receiving. Transmitting is not supported.

2.2. Key Features

Table 4: Key Features

Features	Details
Power Supply	• 3.3–4.3 V
	Typical supply voltage: 3.8 V
	Text and PDU mode
SMS	 Point-to-point MO and MT
OWIO	SMS cell broadcast
	SMS storage: ME by default
USIM Interface	USIM card: 1.8 V, 3.0 V
PCM Interface*	Digital audio interface: PCM interface
	Used for audio function with external Codec
I2C Interface*	One I2C interface
	Compliant with I2C bus specification
	 Compliant with USB 2.0 specifications (only supports slave mode)
	 Data rate: up to 480 Mbps
USB Interface	 Used for AT command communication, data transmission, software
	debugging, firmware upgrading and outputting logs
	 USB Serial Driver: Windows 8.1/10/11, Linux 2.6–6.7, Android 4.x–13.x
	Main UART:
	 Used for AT command communication and data transmission
	Baud rate: 115200 bps by default
	 RTS and CTS hardware flow control
UART Interfaces	Debug UART:
	 Used for outputting partial logs
	 Baud rate: 115200 bps and 3000000 bps
	Auxiliary UART*:
	Baud rate: 115200 bps by default
Network Indication	NET_STATUS to indicate network connectivity status
AT Commands	Compliant with 3GPP TS 27.007, 3GPP TS 27.005
AT Commands	Compliant with Quectel enhanced AT commands
Antenna Interface	 LTE/Wi-Fi Scan antenna interface (ANT_MAIN)
Antenna intenace	50 Ω impedance
Transmitting Power LTE-FDD: Class 3 (23 dBm ±2 dB)	
	3GPP Rel-14 FDD
LTC Cookers	Max. LTE category: Cat 1 bis
LTE Features	 1.4/3/5/10/15/20 MHz RF bandwidth
	 UL modulation: QPSK, 16QAM

	 DL modulation: QPSK, 16QAM and 64QAM
	 LTE-FDD: Max. 10 Mbps (DL)/ 5 Mbps (UL)
Internet Protocol	 TCP/UDP/NTP/NITZ/FTP/HTTP/PING/HTTPS/FTPS/SSL/MQTT/CMUX/P
Features	PP/FILE/SMTP/SMTPS/MMS* protocols
reatures	 PAP and CHAP for PPP connections
	 Operating temperature range ¹: -35 °C to +75 °C
Temperature Range	 Extended temperature range ²: -40 °C to +85 °C
	 Storage temperature range: -40 °C to +90 °C
Firmware Upgrade Via USB interface or DFOTA	
RoHS All hardware components are fully compliant with EU RoHS directive	

Within this range, the module's indicators comply with 3GPP specification requirements.
 Within this range, the module retains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as Pout, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

2.3. Block Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts of the module.

- Power management
- Baseband part
- Radio frequency part
- Peripheral interfaces

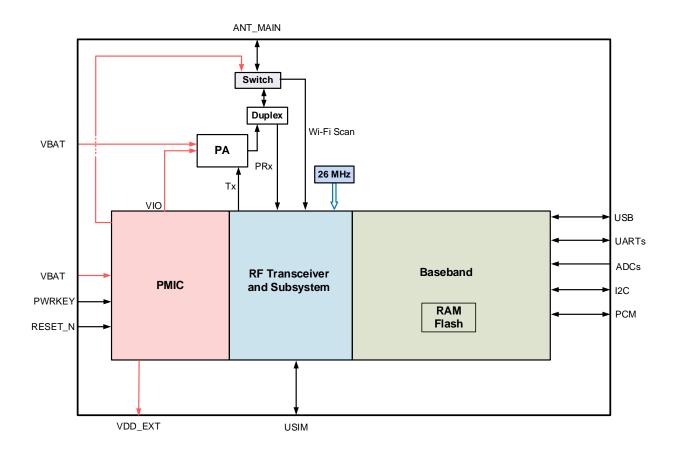


Figure 1: Block Diagram

2.4. Pin Assignment

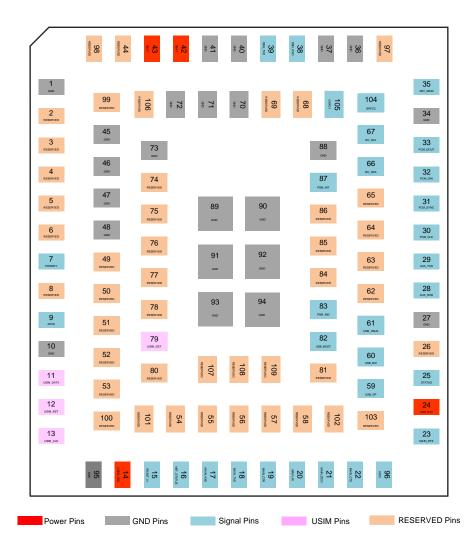


Figure 2: Pin Assignment (Top View)

NOTE

- 1. Do the following only if the module should be put into forced download mode: pull USB_BOOT (pin 82) to the ground before the module successfully starts up.
- 2. In sleep mode, some pins of the main UART interface (pins 17, 18, 22, 23), auxiliary UART interface* (pins 28, 29), debug UART interface (pins 38, 39), USB_BOOT (pin 82), PCM* and I2C* interfaces (pins 30–33, 66, 67), GRFC interfaces (pins 104, 105) are powered down, and the high-level pins will output periodic pulses with the paging cycle. The driving capacity, status indication and data transmission functions of these pins will be invalid. Take this into consideration when designing circuits.
- 3. Keep all RESERVED pins and unused pins unconnected.

2.5. Pin Description

The following table shows the pin descriptions.

Table 5: I/O Parameters Definition

Туре	Description
Al	Analog Input
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
DIO	Digital Input/Output
PI	Power Input
PO	Power Output
OD	Open Drain

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT	42, 43	PI	Power supply for the module	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	External power supply is recommended to provide with sufficient current of 1.5 A. It is recommended to add an external TVS. A test point is recommended to be reserved.	
VDD_EXT	24	РО	Provide 1.8 V for external circuit	$Vnom = 1.8 V$ $I_0max = 50 mA$	A test point is recommended to be reserved.	
GND	1, 10, 2	1, 10, 27, 34, 36, 37, 40, 41, 45–48, 70–73, 88–95				

Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	7	DI	Turn on/off the module	V 0.5 V	Active low. A test point is recommended to be reserved.
RESET_N	15	DI	Reset the module	- V _{IL} max = 0.5 V	Active low. A test point is recommended to be reserved if unused.
Indication Signa	ls				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	25	DO	Indicate the module's operation status Indicate the	V_{OH} min = 1.44 V V_{OL} max = 0.27 V	If unused, keep them open.
NET_STATUS	16	DO	module's network activity status		
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	61	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	A test point must be reserved.
USB_DP	59	AIO	USB differential data (+)		USB 2.0 compliant. Requires differential
USB_DM	60	AIO	USB differential data (-)		impedance of 90 Ω . Test points must be reserved.
USIM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_VDD	14	РО	USIM card power supply	Low-voltage: Vmax = 1.85 V Vmin = 1.75 V	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.

USIM_DATA						
USIM_CLK 13 DO USIM card clock USIM_VDD USIM_RST 12 DO USIM card reset USIM_DET 79 DI USIM card hot-plug detect Vi_mmin = 1.33 ∨ V Vi_mmax = 0.42 ∨ Vi_max = 0.42 ∨ Vi_					Vmax = 3.05 V Vmin = 2.95 V	
USIM_RST 12 DO USIM card reset USIM_DET 79 DI USIM card hot-plug detect Vi_max = 0.42 V Vi_max = 0.42 V If unused, keep it open. Pin Name No. VO Description Characteristics AUX_TXD 29 DO Auxiliary UART transmit AUX_RXD 28 DI Auxiliary UART receive Pin Name No. VO Description Main UART Interface Pin Name No. VO Description MAIN_CTS 22 DO Clear to send signal from the module signal to the module signal to the module MAIN_RXD 17 DI Main UART receive MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect varied var	USIM_DATA	11	DIO	USIM card data		
USIM_DET 79 DI USIM card hot-plug detect Vi_ILmax = 0.42 V If unused, keep it open. Auxiliary UART Interface* Pin Name Pin No. I/O Description No. Auxiliary UART transmit T	USIM_CLK	13	DO	USIM card clock	USIM_VDD	
Auxiliary UART Interface* Pin Name Pin No. I/O Description Characteristics AUX_TXD 29 DO Auxiliary UART transmit AUX_RXD 28 DI Auxiliary UART receive Pin Name Pin No. I/O Description MAIN_CTS 22 DO Clear to send signal from the module from the module signal to the module MAIN_RXD 17 DI Main UART transmit MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect carrier detect carrier detect carrier detect windication MAIN_DTR 19 DI Main UART data terminal ready Debug UART Interface Pin Name Pin No. I/O Description MAIN_DRR 19 DI Description Main UART data terminal ready Debug UART Interface Pin Name Pin No. I/O Description DC Characteristics Comment Connect to MCU's CTS. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Vob_EXT Vob_EXT If unused, keep it open. Vob_max = 0.42 v Vob_max = 0.42 v Vob_max = 0.42 v Vob_max = 0.42 v Test points must be reserved.	USIM_RST	12	DO	USIM card reset		
Pin Name Pin No. VO Description DC Characteristics AUX_TXD 29 DO Auxiliary UART transmit AuX_IRXD 28 DI Auxiliary UART receive Main UART Interface Pin Name Pin No. VO Description Request to send signal from the module MAIN_RXD 17 DI Main UART transmit MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART transmit DE Main UART data carrier detect Main UART data Vill max = 0.42 V Debug UART Interface Pin Name Pin No. VO Description DC Characteristics Comment DBG_RXD 38 DI Debug UART receive Debug UART receive Debug UART mesmit DBG_TXD 39 DO Debug UART receive DEBUg UAR	USIM_DET	79	DI			If unused, keep it open.
Pin Name No. I/O Description Characteristics Comment AUX_TXD 29 DO Auxiliary UART transmit transmit VDD_EXT If unused, keep them open. AUX_RXD 28 DI Auxiliary UART receive VDD_EXT If unused, keep them open. Main UART Interface Description No. DC Characteristics Comment MAIN_CTS 22 DO Clear to send signal from the module from the module signal to the module signal to the module signal to the module arrived receive VDD_EXT If unused, keep it open. MAIN_RXD 17 DI Main UART receive VolD_EXT If unused, keep it open. MAIN_DCD 21 DO Main UART data carrier detect Volman = 1.44 V Volman = 1.44 V Volman = 0.27 V Volman = 0.27 V Volman = 0.27 V Volman = 0.27 V Volman = 0.42 V If unused, keep them open. MAIN_DTR 19 DI Main UART data terminal ready Volman = 1.33 V Volman = 0.42 V Debug UART Interface Pin Name No. I/O Description DC Characteristics Comment DBG_RXD 38 DI Debug UART receive VDD_EXT Test points must be reserved.	Auxiliary UART I	nterface	*			
AUX_RXD 28 DI Auxiliary UART receive Main UART Interface Pin Name Pin No. VO Description MAIN_CTS 22 DO Clear to send signal from the module signal to the module MAIN_RTS 23 DI Main UART receive MAIN_RXD 17 DI Main UART receive MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect carrier detect carrier detect carrier detect carrier detect terminal ready MAIN_DTR 19 DI Main UART data terminal ready Debug UART Interface Pin Name Pin No. VO Description DC Characteristics Connect to MCU's CTS. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. VDD_EXT VDD_EXT If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Vol-min = 1.44 V Vol-mi	Pin Name		I/O	Description		Comment
AUX_RXD 28 DI AUXIIIARY UART receive Main UART Interface Pin Name Pin No. I/O Description DC Characteristics MAIN_CTS 22 DO Clear to send signal from the module MAIN_RTS 23 DI Request to send signal to the module MAIN_RXD 17 DI Main UART receive MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect Amain UART ring indication MAIN_DTR 19 DI Main UART data terminal ready Debug UART Interface Pin Name Pin No. I/O Description Description DBG_RXD 38 DI Debug UART receive DBG_RXD 39 DO Debug UART transmit AUXIII UART data receive DDC Characteristics Comment Connect to MCU's CTS. If unused, keep it open. VoDD_EXT VoDD_EXT VoHmin = 1.44 V VoHmin = 1.44 V VoHmin = 1.33 V VoHmin = 1.33 V VoHmin = 1.33 V VoHmin = 1.33 V VoHmin = 1.44 V VoHmi	AUX_TXD	29	DO	•	VDD EVT	If unused, keep them
Pin Name Pin No. I/O Description DC Characteristics Comment MAIN_CTS 22 DO Clear to send signal from the module from the module signal from the module signal to the module	AUX_RXD	28	DI	· ·	VDD_EXT	open.
Pin Name No. I/O Description Characteristics Comment MAIN_CTS 22 DO Clear to send signal from the module from the module signal to the module signal signal to the module signal sign	Main UART Inter	face				
MAIN_RTS 23 DI Request to send signal to the module MAIN_RXD 17 DI Main UART receive MAIN_DCD 21 DO Main UART data carrier detect MAIN_DCD MAIN_DTR 19 DI Main UART data terminal ready MAIN_DTR MAIN_DTR Pin Name Pin No. DBG_RXD DBG_RXD 39 DO Main UART transmit If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. VDD_EXT If unused, keep it open. VDD_EXT If unused, keep it open. Vohmin = 1.44 V Vohmin = 1.44 V Vohmin = 1.44 V Vohmin = 1.33 V Vihmin = 1.33 V Vilmax = 0.27 V Comment Connect to MCU's RTS. If unused, keep it open. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Pin unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Poheman is unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Poheman is unused, keep it open. Poheman is unused, keep it open. Poheman is unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Poheman is unused, keep it open. Connect to MCU's RTS. If unused, keep it open. Poheman is unused, keep it open. Poheman is unused, keep it open. Vohanin = 1.44 V Vohanin = 1.44	Pin Name		I/O	Description	_	Comment
MAIN_RXD 17 DI Main UART receive MAIN_RXD 17 DI Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect	MAIN_CTS	22	DO	•		
MAIN_RXD 17 DI Main UART receive MAIN_TXD 18 DO Main UART transmit MAIN_DCD 21 DO Main UART data carrier detect	MAIN_RTS	23	DI	·	VDD EXT	
MAIN_DCD 21 DO Main UART data carrier detect VoHmin = 1.44 V VoHmin = 1.44 V VoLmax = 0.27 V If unused, keep them open. MAIN_RI 20 DO Main UART ring indication MAIN_DTR 19 DI Main UART data terminal ready VoLmax = 0.27 V VoLmax = 0.27 V Debug UART Interface Pin Name Pin No. I/O Description DC Characteristics DBG_RXD 38 DI Debug UART receive VDD_EXT Test points must be reserved.	MAIN_RXD	17	DI	Main UART receive	_	
MAIN_DCD 21 DO carrier detect VoHmin = 1.44 V VoLmax = 0.27 V indication MAIN_DTR 19 DI Main UART data terminal ready VIHmin = 1.33 V VILmax = 0.42 V Debug UART Interface Pin Name Pin No. I/O Description Description Debug UART receive VDD_EXT DBG_TXD 39 DO Debug UART transmit DO Debug UART Interface VDD_EXT Test points must be reserved.	MAIN_TXD	18	DO	Main UART transmit	_	
MAIN_RI 20 DO Main UART ring indication MAIN_DTR 19 DI Main UART data terminal ready Pin Name Pin No. I/O Description Debug UART Interface Debug UART ring indication VIHMIN = 1.33 V VIHMIN = 1.33 V VIHMIN = 0.42 V Debug UART Interface DC Characteristics Comment Test points must be reserved.	MAIN_DCD	21	DO		V _{OH} min = 1.44 V	•
Debug UART Interface Pin Name Pin No. Description Debug UART DBG_RXD BO Debug UART receive Debug UART Debug UART receive Debug UART Test points must be reserved.	MAIN_RI	20	DO	•	V_{OL} max = 0.27 V	opo
Pin Name Pin No. I/O Description DC Characteristics DBG_RXD 38 DI Debug UART receive Debug UART Test points must be reserved. DBG_TXD 39 DO Debug UART transmit	MAIN_DTR	19	DI			
DBG_RXD 38 DI Debug UART receive VDD_EXT Test points must be reserved. DBG_TXD 39 DO Debug UART transmit Test points must be reserved.	Debug UART Into	erface				
DBG_RXD 38 DI receive VDD_EXT Test points must be reserved. DBG_TXD 39 DO transmit Test points must be reserved.	Pin Name		I/O	Description		Comment
DBG_TXD 39 DO Debug UART reserved. transmit	DBG_RXD	38	DI	•	- VDD EYT	Test points must be
I2C Interface*	DBG_TXD	39	DO	•	VDD_EXI	reserved.
	I2C Interface*					

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
I2C_SCL	67	OD	I2C serial clock		External pull-up resistor i	
I2C_SDA	66	OD	I2C serial data	VDD_EXT	required. If unused, keep them open.	
PCM Interface*						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PCM_SYNC	31	DO	PCM data frame sync	_		
PCM_CLK	30	DO	PCM clock	VDD_EXT	If unused, keep them	
PCM_DIN	32	DI	PCM data input		open.	
PCM_DOUT	33	DO	PCM data output			
RF Antenna Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
ANT_MAIN ³	35	AIO	Main antenna/ Wi- Fi Scan antenna interface		50 Ω impedance.	
ADC Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
ADC0	9	AI	General-purpose ADC interface	Input voltage range:	If unused, keep them	
ADC1	96	AI	General-purpose ADC interface	0–1.2 V	open.	
Other Interfaces	\$					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USB_BOOT	82	DI	Force the module into download mode	VDD_EXT	Active low. A test point must be reserved.	
PSM_IND*	83	DO	Indicate the module's power saving mode	V_{OH} min = 1.44 V V_{OL} max = 0.27 V	If unused, keep it open.	
PSM_INT*	87	DI	External interrupt; wake up the module	V_{IH} min = 1.33 V V_{IL} max = 0.42 V	Externally pulling up this pin can make the module	

 $^{^{\}rm 3}$ Main antenna and Wi-Fi Scan antenna only support passive antennas.

			from power saving	exit power saving mode.	
			mode	If unused, keep it open.	
GRFC2	104	DO	Generic RF		
GRFC2	NFG2 104	+ DO	controller	If unused, keep them	
GRFC1	105	05 00	Generic RF	open.	
GRECT	105	DO	controller		
DESERVED	2–6, 8	, 26, 44	, 49–58, 62–65, 68, 69, 74–78, 80, 81,	Voor those pine open	
RESERVED	84–86	6, 97–10	3, 106-109	Keep these pins open.	

Some pins of the module are divided into three types: WAKEUP, AGPIO, and AGPIOWU pins. The pin characteristics of these three types are as follows.

Table 7: WAKEUP & AGPIO & AGPIOWU Pin Characteristics

WAKEUP Pins	Characteristics				
PSM_INT*USB_VBUSUSIM_DET	 Support wake-up interrupt function. High-level voltage: about 1.2 V for PSM_INT and USIM_DET. The state of the pins will not be affected even if the module enters the sleep mode. 				
AGPIO Pins	Characteristics				
MAIN_DCDPSM_IND*STATUSNET_STATUSMAIN_RI	The state of the pins will not be affected even if the module enters the sleep mode.				
AGPIOWU Pin	Characteristics				
MAIN_DTR	 Supports wake-up interrupt function. High-level voltage: about 1.2 V. The state of the pins will not be affected even if the module enters the sleep mode. 				

2.6. EVB Kit

Quectel supplies an evaluation board (UMTS<E EVB) with accessories to develop and test the module. For more details, see *document [1]*.

3 Operating Characteristics

3.1. Operating Modes

Table 8: Overview of Operating Modes

Mode	Details			
Full Functionality	Idle Software is active. The module is registered on the network but has no data interaction with the network.			
Mode	Data Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.			
Minimum	 Executing AT+CFUN =0 sets the module to minimum functionality mode. 			
Functionality Mode	 Both RF function and USIM card are invalid. 			
Airplane Mode	 Executing AT+CFUN =4 sets the module to airplane mode. RF function is invalid. 			
Sleep Mode	Power consumption of the module is reduced to the minimal level, but the module can still receive paging, SMS and TCP/UDP data from the network.			
Power Down Mode	The VBAT power supply for the module remains applied, and software is not executed.			

For more details about AT+CFUN, see document [2].

3.2. Sleep Mode

The power consumption of the module is reduced to a minimum level during sleep mode.

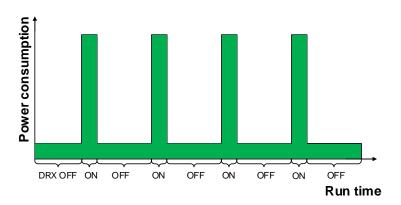


Figure 3: Power Consumption During Sleep Mode

NOTE

- 1. The DRX period value is sent by the base station over the wireless network.
- 2. In sleep mode, some pins of the main UART interface (pins 17, 18, 22, 23), auxiliary UART interface* (pins 28, 29), debug UART interface (pins 38, 39), USB_BOOT (pin 82), PCM* and I2C* interfaces (pins 30–33, 66, 67), GRFC interfaces (pins 104, 105) are powered down, and the high-level pins will output periodic pulses with the paging cycle. The driving capacity, status indication and data transmission functions of these pins will be invalid. Take this into consideration when designing circuits.

3.2.1. UART Application Scenario

If the MCU communicates with the module via UART interface, the following two preconditions should be met to make the module enter sleep mode.

- Execute AT+QSCLK=1. For more details, see document [2].
- Ensure MAIN_DTR is held high or is kept unconnected.

The figure illustrates the connection between the module and the MCU.

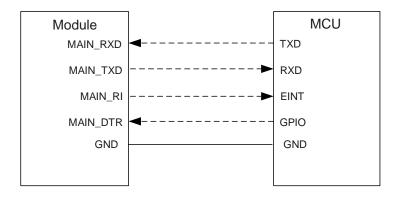


Figure 4: Sleep Mode Application via UART

- Driving the MAIN_DTR low will wake up the module.
- When the module has a URC to report, MAIN_RI signal will wake up the MCU. See Chapter 4.8.3
 for details about MAIN_RI behavior.

Pay attention to the level match shown in dotted line between the module and the MCU.

3.2.2. USB Application Scenario

For the two situations below, three preconditions must be met to make the module enter sleep mode.

- Execute AT+QSCLK=1.
- Ensure the MAIN_DTR is held high or is kept unconnected.
- Ensure the host's USB bus, which is connected with the module's USB interface, enters suspend state.

3.2.2.1. USB Application with USB Suspend/Resume & Remote Wakeup Function

The host supports USB suspend, resume and remote wakeup function. The figure illustrates the connection between the module and the host.

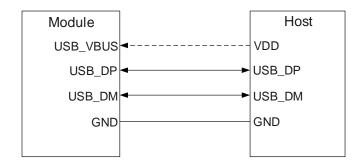


Figure 5: Sleep Mode Application with USB Remote Wakeup

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send remote wake-up signals through USB bus to wake up the host.

3.2.2.2. USB Application with USB Suspend/Resume and MAIN_RI Function

If the host supports USB suspend and resume, but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host. The following figure illustrates the connection between the module and the host.

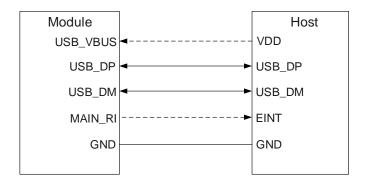


Figure 6: Sleep Mode Application with MAIN RI

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, MAIN_RI signal will wake up the host. See Chapter 4.8.3 for details about MAIN_RI behavior.

3.2.2.3. USB Application without USB Suspend Function

If the host does not support USB suspend function, the following three preconditions should be met to make the module enter sleep mode.

- Execute AT+QSCLK=1.
- Ensure the MAIN_DTR is held high or is kept unconnected.
- Disconnect the USB_VBUS power supply.

If the host does not support USB suspend function, USB_VBUS should be disconnected through an external control circuit to make the module enter sleep mode. The figure illustrates the connection between the module and the host.

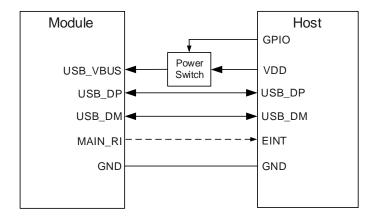


Figure 7: Sleep Mode Application without USB Suspend

Restore the supply power of USB_VBUS will wake up the module.

Pay attention to the level match shown in dotted line between the module and the host.

3.3. Airplane Mode

When the module enters airplane mode, the RF function is disabled and all related AT commands cannot be executed. This mode can be set through AT+CFUN=<fun>, which allows you to choose the functionality level through setting <fun> as 0, 1 or 4. For more details, see *document [2]*.

- AT+CFUN=0: Minimum functionality mode. (Both RF and USIM functions are disabled)
- AT+CFUN=1: Full functionality mode. (Default).
- AT+CFUN=4: Airplane mode. (RF function is disabled)

3.4. Power Supply

3.4.1. Power Supply Pins

The module has two VBAT pins for connecting to external power supply.

Table 9: Pin Definition of Power Supply

Pin Name	Pin No.	I/O	Description	Min.	Тур.	Max.	Unit
VBAT	42, 43	PI	Power supply for the module	3.3	3.8	4.3	V
GND	1, 10, 27	, 34, 36	6, 37, 40, 41, 45–48, 70–73, 88–95				

3.4.2. Power Supply Reference Design

Power supply design is essential for module performance. It is recommended to be provided with sufficient current of 1.5 A to the module. If the voltage difference between input voltage and the supply voltage is small, it is suggested to use an LDO; if the voltage difference is big, a buck converter is recommended.

A reference design for +5 V input power source is illustrated in the following figure (Please adjust the parameters in accordance with the actual situation).

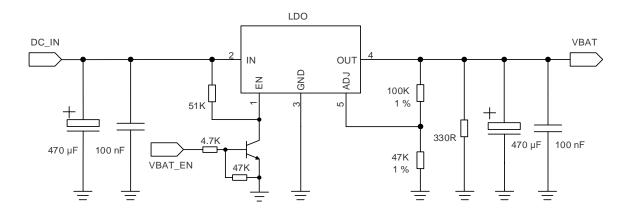


Figure 8: Power Supply Reference Design

3.4.3. Voltage Stability Requirements

The power supply range of the module is 3.3–4.3 V. Make sure the input voltage never drops below 3.3 V.

To decrease the voltage drop, use a bypass capacitor of about 100 μ F with low ESR (ESR \leq 0.7 Ω). A multi-layer ceramic chip (MLCC) capacitor array with ultra-low ESR is recommended. Use three ceramic

capacitors (100 nF, 10 pF and 33 pF) to compose the array and place them close to VBAT pins. If the module is powered from a single voltage source, then the power supply distribution path can be traced with a star topology structure when connect to the module. The width of VBAT trace should be at least 2 mm. In principle, the longer the VBAT trace is, the wider it should be.

To avoid power ripples and surges and ensure the stability of the power supply, add a TVS with $V_{RWM} = 4.7 \text{ V}$, low clamping voltage and high reverse peak pulse current I_{PP} at the front end of the power supply. Reference design is shown below.

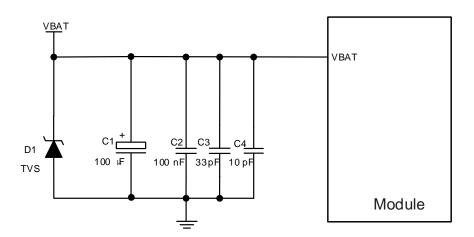


Figure 9: Power Supply Reference Design

3.5. Turn On

3.5.1. Turn On with PWRKEY

Table 10: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	7	DI Turn on/off the module	Turn on/off the module	Active low.
FVVIXIXLI	1	DI	Turn on/off the module	A test point is recommended to be reserved.

When the module is in power-down mode, it can be turned on by driving the PWRKEY low for at least 500 ms. It is recommended to use an open collector driver to control the PWRKEY.

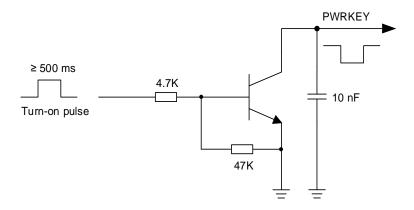


Figure 10: Reference Design of Turning on the Module with Driving Circuit

The module can also be turned on by pressing the PWRKEY button. A TVS diode should be placed near the button for protection against ESD.

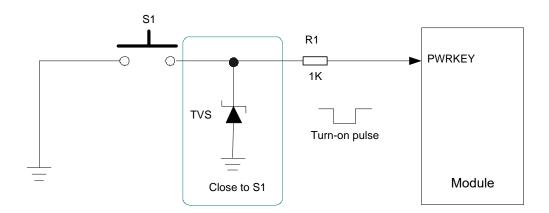


Figure 11: Reference Design of Turning on Module with Keystroke

The power-up timing is illustrated in the following figure.

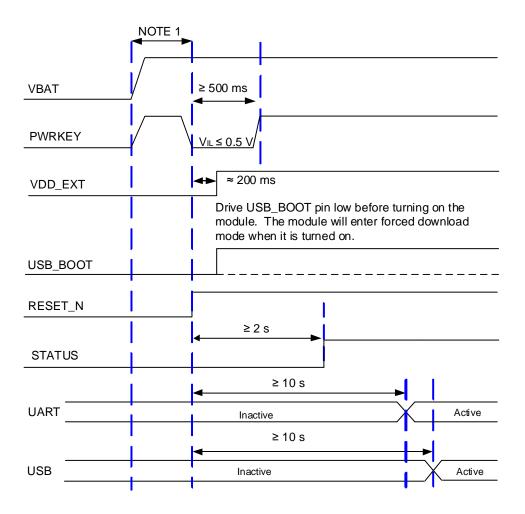


Figure 12: Power-up Timing

NOTE

- 1. Ensure a stable VBAT for at least 30 ms before driving the PWRKEY low.
- 2. If the module needs to turn on automatically but does not need turn-off function, you can drive PWRKEY pin low by connecting it directly to the ground with a recommended 4.7 k Ω resistor or by using a GPIO to drive PWRKEY low before the module turns on (PWRKEY needs to remain at low level after the module is turned on).

3.6. Turn Off

The following procedures can be used to turn off the module normally.

3.6.1. Turn Off with PWRKEY

The module will execute turn-off procedure if you drive the PWRKEY pin low for at least 650 ms and then

release it.

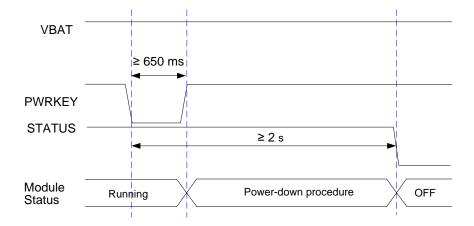


Figure 13: Timing of Turn-off with PWRKEY

3.6.2. Turn Off with AT Command

You can execute **AT+QPOWD**, to turn off the module. The timing and the effect are similar to those when using the PWRKEY pin to turn the module off. See *document [2]* for details about **AT+QPOWD**.

NOTE

- 1. When PWRKEY is pulled down to the ground, AT+QPOWD cannot be used to turn off the module.
- When turning off the module with the AT command, keep PWRKEY at high level after the execution of the command. Otherwise, the module will be turned on automatically again after successful turnoff.

3.7. Reset

Pulling down PWRKEY when RESET_N is at low level can reset the module. The RESET_N signal is sensitive to interference. Therefore, it is recommended to route the trace as short as possible and surround it with ground.

Table 11: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET N	15	DI	Reset the module	Active low. A test point is recommended to be
IXEOLT_IX	15	וט		reserved if unused.

You can use an open collector driver to control RESET_N and PWRKEY pins.

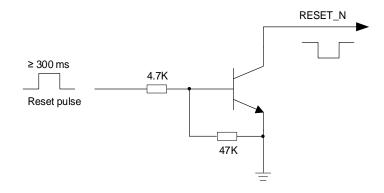


Figure 14: Reference Design of RESET_N with Driving Circuit

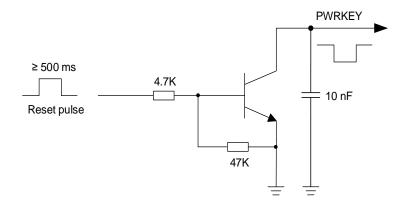


Figure 15: Reference Design of PWRKEY with Driving Circuit

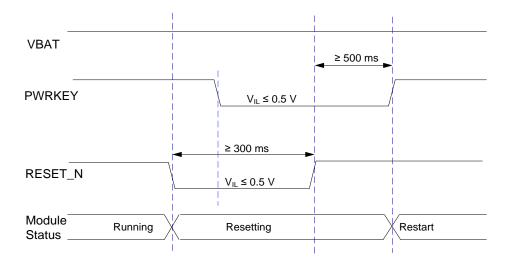


Figure 16: Reset Timing

NOTE

- 1. Pull down PWRKEY when RESET_N is at low level.
- 2. Ensure that the capacitances connected to PWRKEY and RESET_N do not exceed 10 nF.
- 3. When PWRKEY is pulled down to the ground, the module can be reset by pulling RESET_N to low level.

4 Application Interfaces

4.1. USB Interface

The module has one USB interface, which complies with the USB 2.0 specifications, and supports high speed (480 Mbps) and full speed (12 Mbps) on USB 2.0. The module only supports USB slave mode. The USB interface can be used for AT command communication, data transmission, software debugging, firmware upgrading and outputting logs.

Table 12: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	61	Al	USB connection detect	A test point must be reserved.
USB_DP	59	AIO	USB differential data (+)	USB 2.0 compliant.
USB_DM	60	AIO	USB differential data (-)	Require differential impedance of 90 Ω . Test points must be reserved.

It is recommended to use USB interface for firmware upgrading. Test points must be reserved so that logs can be obtained and customers' issues can be found.

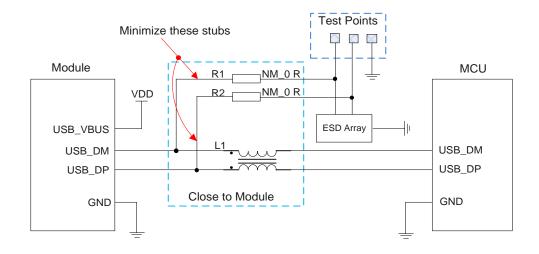


Figure 17: Reference Circuit of USB Interface

It is recommended to add a common-mode choke L1 in series between the module and MCU to suppress EMI. In addition, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points for debugging. These resistors are not mounted by default. To ensure USB data transmission integrity, L1, R1 and R2 must be placed close to the module, and resistors R1 and R2 should be placed close to each other. Extra trace stubs must be as short as possible.

To ensure performance, you should follow the following principles when designing a USB interface:

- Route the USB signal traces as differential pairs surrounded by ground. The impedance of USB 2.0 differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in an inner layer of the PCB, and surround the traces
 with ground on that layer and with ground planes above and below.
- Pay attention to the impact caused by stray capacitance of the ESD protection component on USB data traces. Typically, the stray capacitance should be less than 2 pF.
- Place ESD protection components as close to the USB interface as possible.

For more details about the USB specifications, visit http://www.usb.org/home.

4.2. USB_BOOT

The module has a USB_BOOT pin. If you drive USB_BOOT to the ground before turning on the module, the module will enter forced download mode when turned on. In this mode, the module supports firmware upgrade over USB 2.0 interface.

Table 13: Pin Definition of USB BOOT

Pin Name	Pin No.	I/O	Description	Comment
USB BOOT	82	DI	Force the module into download mode	Active low.
000_0001	02		Torce the module into download mode	A test point must be reserved.

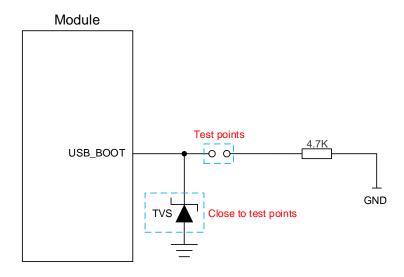


Figure 18: Reference Design of USB_BOOT Interface

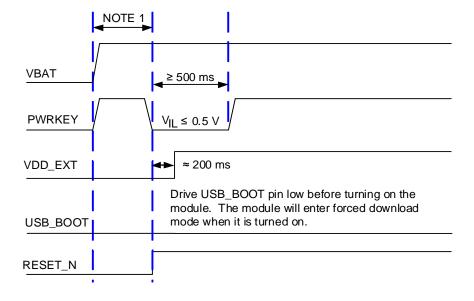


Figure 19: Timing of Entering Forced Download Mode

- 1. Ensure a stable VBAT for at least 30 ms before driving the PWRKEY low.
- 2. When using MCU to put the module to forced download mode, follow the above timing. If you need to manually force the module to enter forced download mode, connect the test points as shown in *Figure 18*.

4.3. UART Interfaces

The module has 3 UART interfaces.

Table 14: UART Information

UART Types	Supported Baud Rates (bps)	Default Baud Rates (bps)	Functions
Main UART interface	4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600	115200	 AT command communication and data transmission RTS and CTS hardware flow control
Debug UART interface	115200, 3000000	3000000	Partial log output
Auxiliary UART interface*	115200	115200	-

Table 15: Pin Definition of UART Interfaces

Pin Name	Pin No.	I/O	Description	Comment
MAIN_CTS	22	DO	Clear to send signal from the module	Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	23	DI	Request to send signal to the module	Connect to MCU's RTS. If unused, keep it open.
MAIN_RXD	17	DI	Main UART receive	
MAIN_DCD	21	DO	Main UART data carrier detect	
MAIN_TXD	18	DO	Main UART transmit	
MAIN_RI	20	DO	Main UART ring indication	If unused, keep them open.
MAIN_DTR	19	DI	Main UART data terminal ready	_
AUX_TXD*	29	DO	Auxiliary UART transmit.	
AUX_RXD*	28	DI	Auxiliary UART receive.	
DBG_RXD	38	DI	Debug UART transmit	Test points must be
DBG_TXD	39	DO	Debug UART receive	reserved.

The module has 1.8 V UART interfaces. If the level of the MCU is 1.8 V, and the MAIN_TXD of the module is connected to the RXD of the MCU, the MAIN_TXD must be connected to a 10 k Ω resistor and pulled up to 1.8 V to prevent the MCU from receiving error messages when the module is in sleep mode. A voltage-level translator should be used if the application features a 3.3 V UART interface.

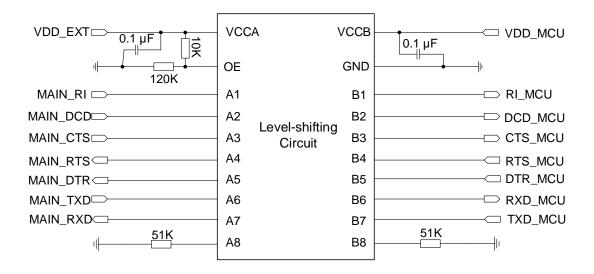


Figure 20: Reference Design of UART with Voltage-Level Translator (Main UART)

Another example of level-shifting circuit is shown below. For the design of input/output circuits in dotted lines, see the ones in solid lines, but pay attention to the direction of the connection.

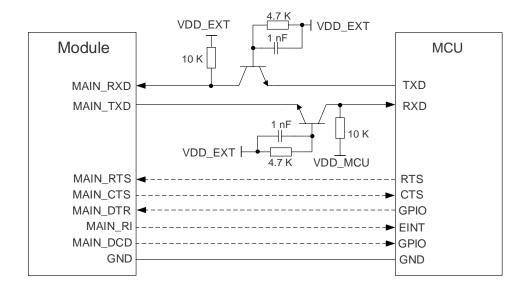


Figure 21: Reference Design of UART with Transistor Level-Shifting Circuit (Main UART)

- 1. Transistor level-shifting circuit above is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module's CTS is connected to MCU's CTS, and the module's RTS is connected to MCU's RTS.
- The level-shifting circuits (Figure 20 and Figure 21) take the main UART as an example. The
 circuits of the debug UART and the auxiliary UART are connected in the same way as the main
 UART.
- 4. To increase the stability of UART communication, it is recommended to add UART hardware flow control design.

4.4. USIM Interface

The USIM interface meets ETSI and IMT-2000 requirements. Both the 1.8 V and the 3.0 V USIM cards are supported.

Table 16: Pin Definition of USIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_VDD	14	РО	USIM card power supply	Either 1.8 V or 3.0 V USIM card is supported and can be identified automatically by the module.
USIM_DATA	11	DIO	USIM card data	
USIM_CLK	13	DO	USIM card clock	
USIM_RST	12	DO	USIM card reset	
USIM_DET	79	DI	USIM card hot-plug detect	If unused, keep it open.

The module supports USIM card hot-plug detection via the USIM_DET pin, and both high and low level detection are supported. The function is disabled by default, and see **AT+QSIMDET** in **document [2]** for more details.

A reference design of USIM card interface with an 8-pin USIM card connector is illustrated in the following figure.

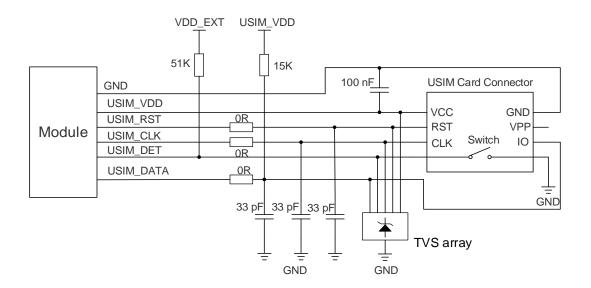


Figure 22: Reference Design of USIM Interface with an 8-Pin USIM Card Connector

If USIM card detection function is not needed, keep USIM_DET disconnected. A reference design of USIM interface with a 6-pin USIM card connector is illustrated in the following figure.

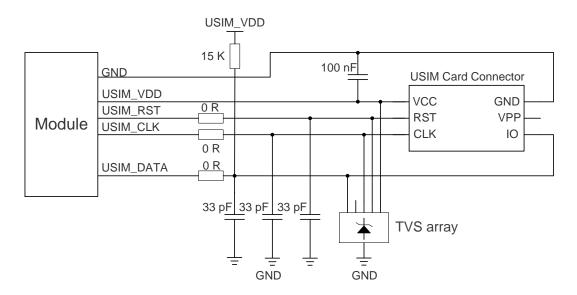


Figure 23: Reference Design of USIM Interface with a 6-Pin USIM Card Connector

To enhance USIM card reliability and availability in applications, follow the principles below in the USIM circuit design:

- Place the USIM card connector close to the module. Keep the trace length as short as possible, at most 200 mm.
- Keep USIM card signal traces away from RF and power supply traces.
- Make sure that the bypass capacitor between USIM_VDD and GND does not exceed 1 μF, and should be placed close to the USIM card connector.

- To avoid cross talk between USIM_DATA and USIM_CLK, keep the traces away from each other and shield them by surrounding them with ground.
- To improve ESD protection, it is recommended to add a TVS array on USIM pins. The parasitic capacitance of the TVS array should not exceed 15 pF. Add 0 Ω resistors in series between the module and the USIM card connector to facilitate debugging. The 33 pF capacitors on USIM_DATA, USIM_CLK and USIM_RST are used for filtering out RF interference. In addition, keep the USIM peripheral circuit close to the USIM card connector.
- The pull-up resistor on USIM_DATA trace can improve anti-jamming capability when long layout trace and sensitive occasions are applied, and should be placed close to the USIM card connector.

4.5. PCM* and I2C* Interfaces

The module has one Pulse Code Modulation (PCM) digital interface and one I2C interface.

Table 17: Pin Definition of PCM and I2C Interfaces

Pin No.	I/O	Description	Comment	
31	DO	PCM data frame sync		
30	DO	PCM clock	- If way and I know the own and on	
32	DI	PCM data input	- If unused, keep them open.	
33	DO	PCM data output	_	
67	OD	I2C serial clock	External pull-up resistor is required.	
66	OD	I2C serial data	If unused, keep them open.	
	31 30 32 33 67	31 DO 30 DO 32 DI 33 DO 67 OD	31 DO PCM data frame sync 30 DO PCM clock 32 DI PCM data input 33 DO PCM data output 67 OD I2C serial clock	

A reference design of PCM and I2C interfaces with external Codec IC is illustrated in the following figure.

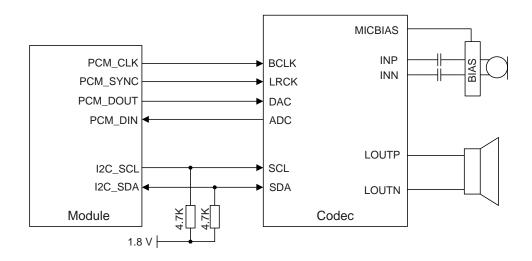


Figure 24: Reference Circuit of PCM and I2C Interfaces

- 1. It is recommended to reserve RC circuits (R = 22 Ω , C = 22 pF) on the PCM signal traces, especially on the PCM_CLK pin.
- 2. The module can only be used as a master device in applications related to both the PCM interface and the I2C interface.

4.6. ADC Interfaces

The module features two Analog-to-Digital Converter (ADC) interfaces. To improve ADC accuracy, the trace of ADC interfaces should be surrounded by ground.

Table 18: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
ADC0	9	Al	General-purpose ADC interface	If unused, keep them	
ADC1	96	Al	General-purpose ADC interface	open.	

With AT+QADC=<port>, you can:

- AT+QADC=0: read the voltage value on ADC0
- AT+QADC=1: read the voltage value on ADC1

For more details about the AT command, see document [2].

Table 19: ADC Interface Features

Name	Min.	Тур.	Max.	Unit
ADC input voltage range	0	-	1.2	V
ADC input resistance	0.26	-	0.75	ΜΩ
ADC resolution	-	12	-	bits

If the acquisition voltage is greater than or equal to 1.2 V, it is recommended to use resistor divider circuit for ADC interface application. Resistance of the resistor divider should not exceed 100 k Ω , or the measurement accuracy of ADC would be significantly reduced. It is recommended to reserve a 100 nF capacitor for the design.

4.7. PSM_IND* & PSM_INT*

The module supports power saving mode (PSM).

Table 20: Pin Definition of PSM_IND and PSM_INT

Pin Name	Pin No.	I/O	Description	Comment
PSM_IND	83	DO	Indicate the module's power saving mode	If unused, keep it open.
PSM_INT	87	DI	External interrupt; wake up the module from power saving mode	Externally pulling up this pin can make the module exit power saving mode. If unused, keep it open.

4.8. Indication Signals

Table 21: Pin Definition of Indication Signals

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	16	DO	Indicate the module's network activity status	If unused, keep

STATUS	25	DO	Indicate the module's operation status	them open.

4.8.1. Network Status Indication

The NET_STATUS pin indicates the module's network activity status, and can be used to drive network status indication LEDs.

Table 22: Network Connection Status/Activity Indicated by NET_STATUS Pin

Pin Name	Status	Description
	Blink slowly (200 ms High/1800 ms Low)	Network searching
NET_STATUS	Blink slowly (1800 ms High/200 ms Low)	Idle
	Blink quickly (125 ms High/125 ms Low)	Ongoing data transmission

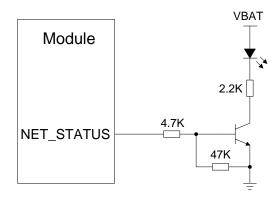


Figure 25: Reference Design of NET_STATUS

4.8.2. STATUS

The STATUS pin is used to indicate the module's operation status. It outputs high level when the module is turned on successfully.

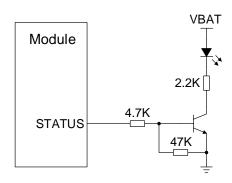


Figure 26: Reference Design of STATUS

4.8.3. MAIN_RI

AT+QCFG= "risignaltype", "physical" can be used to configure MAIN_RI as URC indication pin. An URC will trigger MAIN_RI regardless of the URC output port. For more details about **AT+QCFG**, see **document [2]**.

NOTE

The **AT+QURCCFG** allows you to configure the main UART, USB AT port or USB modem port as the URC output port. The USB AT port is the URC output port by default. For more details about **AT+QURCCFG**, see **document [2]**.

MAIN_RI can be configured flexibly. However, its default behaviors are:

Table 23: Behaviors of MAIN_RI

Module Status	MAIN_RI Level Status
Idle	High
When a new URC	MAIN_RI outputs at least 120 ms low level. After this pin changes to a high level,
information returns	the module starts to output data.

The MAIN_RI can be configured as URC indication pin via AT+QCFG="urc/ri/ring".

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. LTE/Wi-Fi Scan Antenna Interface

5.1.1. Antenna Interface & Frequency Bands

Table 24: Pin Description of LTE/Wi-Fi Scan Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	35	AIO	Main antenna/Wi-Fi Scan antenna interface	50 Ω impedance.

NOTE

- The Wi-Fi scan function utilizes the same antenna interface as the main antenna. Due to this shared interface, Time Division Multiplexing (TDM) is employed since the two functions cannot be used simultaneously. Wi-Fi Scan functionality only supports receiving. Transmitting is not supported.
- 2. Main antenna and Wi-Fi Scan antenna only support passive antennas.

Table 25: Operating Frequency

Operating Frequency	Transmit (MHz)	Receive (MHz)
B1	1920–1980	2110–2170
B2	1850–1910	1930–1990
B3	1710–1785	1805–1880

B4	1710–1755	2110–2155
B5	824–849	869–894
B7	2500–2570	2620–2690
B8	880–915	925–960
B12	699–716	729–746
B13	777–787	746–756
B20	832–862	791–821
B28	703–748	758–803
B66	1710–1780	2110–2180

5.1.2. Tx Power

Table 26: Tx Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
LTE-FDD	23 dBm ±2 dB	< -39 dBm

5.1.3. Rx Sensitivity

Table 27: EG800Q-EU Conducted RF Receiver Sensitivity

Frequency Bands	Receiver Sensitivity (Typ.)	3GPP (SIMO)	
Frequency Bands	Primary	SGFF (SIMO)	
LTE-FDD B1 (10 MHz)	-99.5 dBm	-96.3 dBm	
LTE-FDD B3 (10 MHz)	-99.0 dBm	-93.3 dBm	
LTE-FDD B5 (10 MHz)	-99.5 dBm	-94.3 dBm	
LTE-FDD B7 (10 MHz)	-97.1 dBm	-94.3 dBm	
LTE-FDD B8 (10 MHz)	-99.5 dBm	-93.3 dBm	
LTE-FDD B20 (10 MHz)	-99.5 dBm	-93.3 dBm	

LTE-FDD B28 (10 MHz)	-98.8 dBm	-94.8 dBm

Table 28: EG800Q-NA Conducted RF Receiver Sensitivity

Fraguerou Bondo	Receiver Sensitivity (Typ.)	AODD (CIMO)	
Frequency Bands	Primary	3GPP (SIMO)	
LTE-FDD B2 (10 MHz)	-98.9 dBm	-94.3 dBm	
LTE-FDD B4 (10 MHz)	-98.8 dBm	-96.3 dBm	
LTE-FDD B5 (10 MHz)	-99.5 dBm	-94.3 dBm	
LTE-FDD B12 (10 MHz)	-99.8 dBm	-93.3 dBm	
LTE-FDD B13 (10 MHz)	-98.8 dBm	-93.3 dBm	
LTE-FDD B66 (10 MHz)	-99.0 dBm	-95.8 dBm	

5.1.4. Reference Design

The module has one RF antenna interface for antenna connection. It is recommended to reserve a dual L-type matching circuit for better RF performance, and the dual L-type matching components (C3, C1, R1, and C2) should be placed as close to the antenna as possible. Capacitors C1 and C2 are not mounted by default.

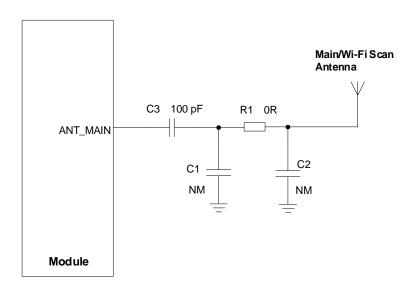


Figure 27: Reference Design of RF Antenna Interfaces

If there is DC power at the antenna ports, C3 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C3 should not be reserved.

5.2. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to $50~\Omega$. The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

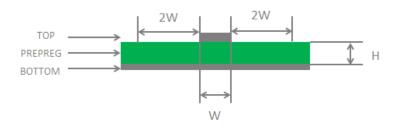


Figure 28: Microstrip Design on a 2-layer PCB

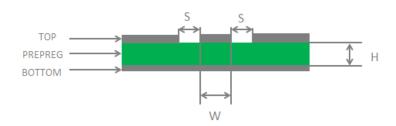


Figure 29: Coplanar Waveguide Design on a 2-layer PCB

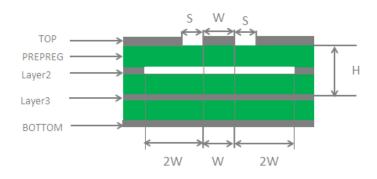


Figure 30: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

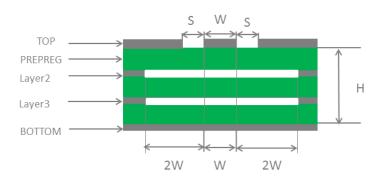


Figure 31: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources (such as DC-DC, (U)SIM/USB/SDIO high frequency digital signals, display signals, and clock signals), and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see **document [3]**.

5.3. Antenna Design Requirements

Table 29: Antenna Design Requirements

Antenna Type	Requirements
Cellular/Wi-Fi Scan	 VSWR: ≤ 2 Efficiency: > 30 % Gain: 1 dBi Max input power: 50 W Input impedance: 50 Ω Vertical polarization Cable insertion loss: < 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz) < 2 dB: HB (> 2.3 GHz)

5.4. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by Hirose.

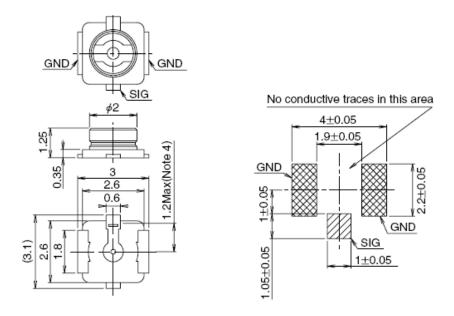


Figure 32: Receptacle Dimensions (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT

connector.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	4	\$ \\ \frac{4}{100} \\ \frac{100}{100} \\ \frac{100}	3.4	87	55
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 33: Specifications of Mated Plugs

The following figure describes the space factor of mated connectors.

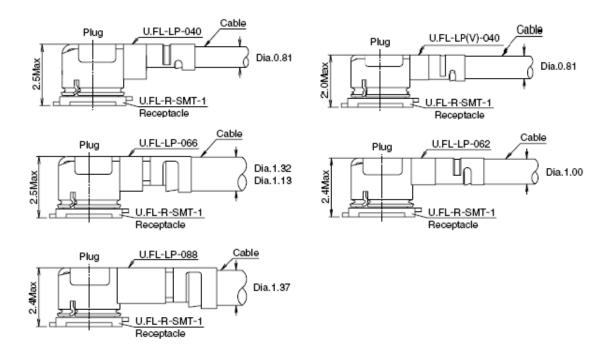


Figure 34: Space Factor of Mated Connectors (Unit: mm)

For more details, visit http://www.hirose.com.

6 Electrical Characteristics & Reliability

6.1. Absolute Maximum Ratings

Table 30: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
Voltage at VBAT	-0.3	5	V
Voltage at USB_VBUS	-0.3	5.25	V
Voltage at digital pins	-0.3	2.3	V

6.2. Power Supply Ratings

Table 31: Module Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	Power supply for the module	The actual input voltages must be kept between the minimum and maximum values.	3.3	3.8	4.3	V
I _{VBAT}	Peak power consumption	At maximum power control level	-	-	1.0	А
USB_VBUS	USB connection detect	-	3.0	5.0	5.25	V

6.3. Power Consumption

Table 32: EG800Q-EU Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	55	μΑ
	AT+CFUN=0 (USB disconnected)	0.06	mA
	AT+CFUN=4 (USB disconnected)	0.15	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.23	mA
Sleep state	LTE-FDD @ PF = 64 (USB disconnected)	0.70	mA
	LTE-FDD @ PF = 64 (USB suspended)	1.10	mA
	LTE-FDD @ PF = 128 (USB disconnected)	0.45	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.35	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	4.50	mA
idle state	LTE-FDD @ PF = 64 (USB connected)	4.50 r	mA
	LTE-FDD B1	662	mA
	LTE-FDD B3	641	mA
	LTE-FDD B5	545	mA
LTE data transfer	LTE-FDD B7	696	mA
	LTE-FDD B8	550	mA
	LTE-FDD B20	577	mA
	LTE-FDD B28	578	mA

Table 33: EG800Q-NA Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	50	μΑ
Sleep state	AT+CFUN=0 (USB disconnected)	0.06	mA

	AT+CFUN=4 (USB disconnected)	0.15	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.20	mA
	LTE-FDD @ PF = 64 (USB disconnected)	0.70	mA
	LTE-FDD @ PF = 64 (USB suspended)	1.00	mA
	LTE-FDD @ PF = 128 (USB disconnected)	0.40	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.30	mA
	LTE-FDD @ PF = 64 (USB disconnected)	4.50	mA
Idle state	LTE-FDD @ PF = 64 (USB connected)	25.00	mA
	LTE-FDD B2	588	mA
	LTE-FDD B4	656	mA
LTC data transfer	LTE-FDD B5	499	mA
LTE data transfer	LTE-FDD B12	572	mA
	LTE-FDD B13	586	mA
	LTE-FDD B66	631	mA

6.4. Digital I/O Characteristics

Table 34: VDD_EXT I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	High-level input voltage	0.7 × VDD_EXT	VDD_EXT + 0.3	V
V _{IL}	Low-level input voltage	-0.3	0.2 × VDD_EXT	V
V _{OH}	High-level output voltage	0.8 × VDD_EXT	-	V
V _{OL}	Low-level output voltage	-	0.15 × VDD_EXT	V

Table 35: USIM Low/High-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	High-level input voltage	0.7 × USIM_VDD	-	V
V _{IL}	Low-level input voltage	-	0.2 × USIM_VDD	V
V _{OH}	High-level output voltage	0.8 × USIM_VDD	-	V
V _{OL}	Low-level output voltage	-	0.15 × USIM_VDD	V

6.5. ESD Protection

Static electricity occurs naturally and may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 36: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
Antenna Interface	±4	±8	kV
Other Interfaces	±0.5	±1	kV

6.6. Operating and Storage Temperatures

Table 37: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁴	-35	+25	+75	°C
Extended Operating Temperature Range ⁵	-40	-	+85	°C
Storage temperature range	-40	-	+90	°C

⁴ Within this range, the module's indicators comply with 3GPP specification requirements.

⁵ Within this range, the module retains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as P_{out}, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeters (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

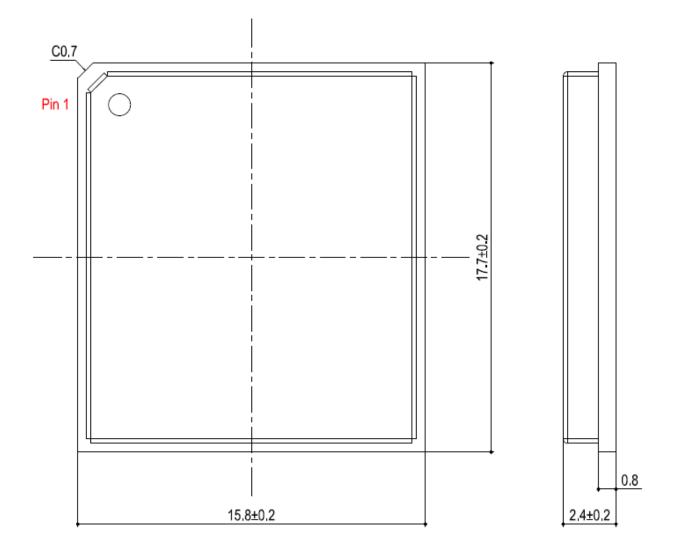


Figure 35: Module Top and Side Dimensions (Unit: mm)

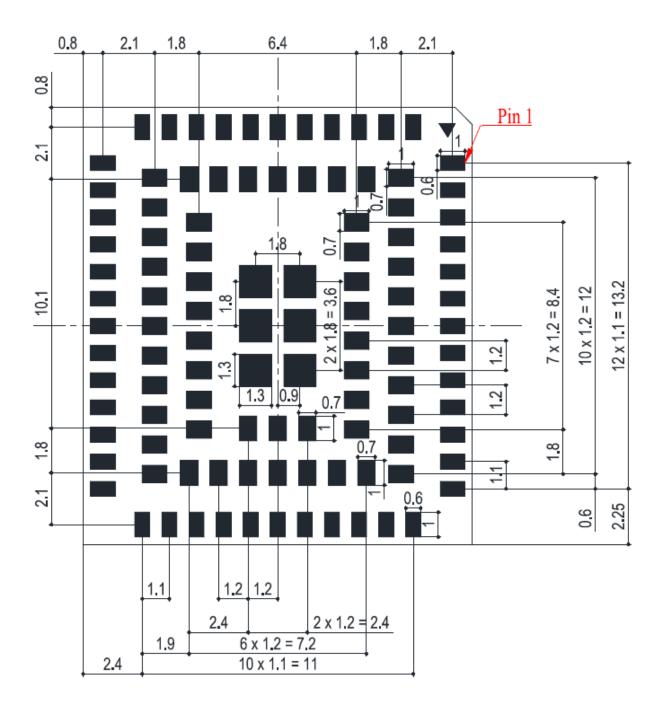


Figure 36: Bottom Dimensions (Bottom View, Unit: mm)

The module's coplanarity standard: ≤ 0.13 mm.

7.2. Recommended Footprint

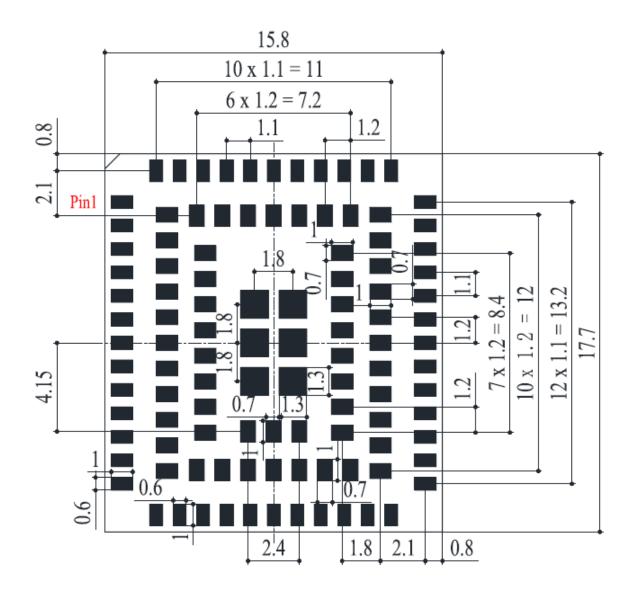


Figure 37: Recommended Footprint (Unit: mm)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

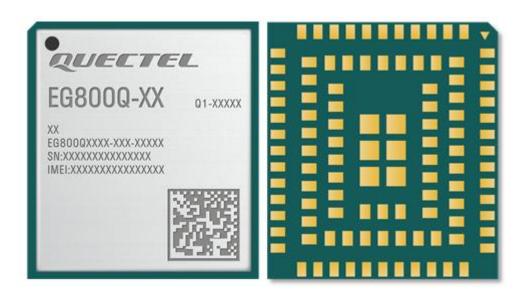


Figure 38: Module Top and Bottom Views

NOTE

Images above are for illustrative purposes only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁶ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

⁶ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [4]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

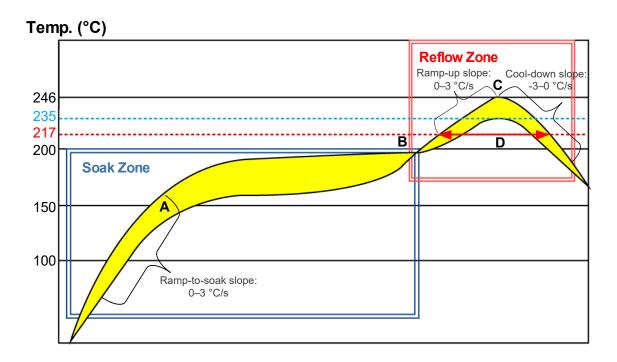


Figure 39: Recommended Reflow Soldering Thermal Profile

Table 38: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak Slope	0–3 °C/s
Soak Time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up Slope	0–3 °C/s
Reflow Time (D: over 217 °C)	40–70 s
Max Temperature	235–246 °C
Cool-down Slope	-3-0 °C/s
Reflow Cycle	
Max Reflow Cycle	1

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
- 7. Corrosive gases may corrode the electronic components inside the module, affecting their reliability and performance, and potentially leading to a shortened service life that fails to meet the designed lifespan. Therefore, do not store or use unprotected modules in environments containing corrosive gases such as hydrogen sulfide, sulfur dioxide, chlorine, and ammonia.
- 8. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic

soldering) that is not mentioned in document [5].

8.3. Packaging Specifications

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

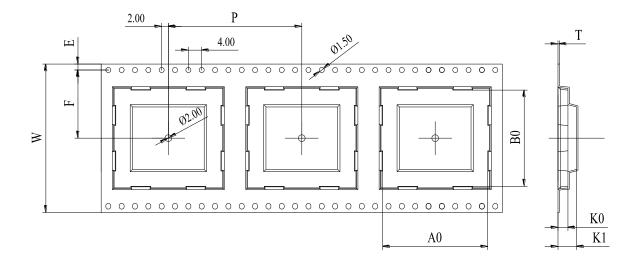


Figure 40: Carrier Tape Dimension Drawing (Unit: mm)

Table 39: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	A0	В0	K0	K 1	F	E
32	24	0.4	16.2	18.1	2.8	7.6	14.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

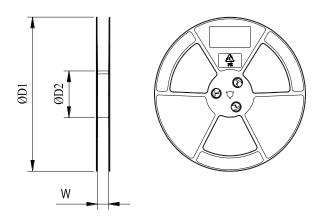
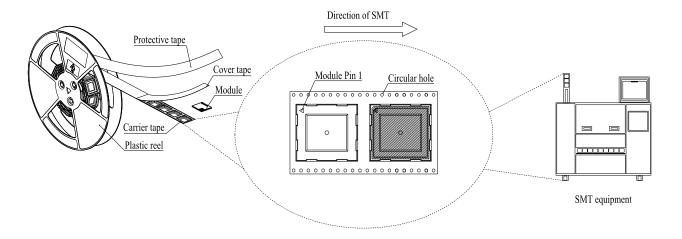



Figure 41: Plastic Reel Dimension Drawing

Table 40: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	32.5

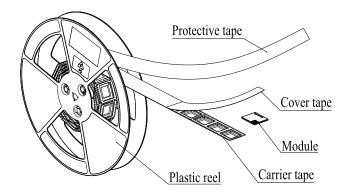
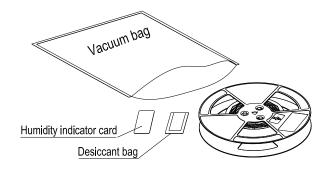
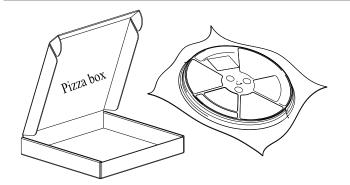

8.3.3. Mounting Direction

Figure 42: Mounting Direction




8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 250 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

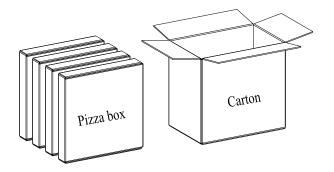


Figure 43: Packaging Process

9 Appendix References

Table 41: Related Documents

Document Name		
[1] Quectel_UMTS<E_EVB_User_Guide		
[2] Quectel_EG800Q&EG91xQ_Series_AT_Commands_Manual		
[3] Quectel_RF_Layout_Application_Note		
[4] Quectel_Module_Stencil_Design_Requirements		
[5] Quectel_Module_SMT_Application_Note		

Table 42: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
bps	Bytes per second
СНАР	Challenge Handshake Authentication Protocol
CMUX	Connection MUX
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over-The-Air
DSSS	Direct Sequence Spread Spectrum
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
ETSI	European Telecommunications Standards Institute

EVB	Evaluation Board
FDD	Frequency Division Duplexing
FILE	File Protocol
FTP	File Transfer Protocol
FTPS	FTP over SSL
GND	Ground
НВ	High Band
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
IMT-2000	International Mobile Telecommunications 2000
I2C	Inter-Integrated Circuit
I _o max	Maximum Output Load Current
LB	Low Band
LCC	Leadless Chip Carrier (package)
LDO	Low-dropout Regulator
LED	Light Emitting Diode
LGA	Land Grid Array
LTE	Long Term Evolution
M2M	Machine to machine
MB	Medium Band
MCU	Microcontroller Unit/Microprogrammed Control Unit
ME	Mobile Equipment
MMS	Multimedia Messaging Service
MO	Mobile Origination
MQTT	Message Queuing Telemetry Transport

MT	Mobile Termination
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol
PAP	Password Authentication Protocol
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PING	Packet Internet Groper
POS	Point of Sale
PPP	Point-to-Point Protocol
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request To Send
SMD	Surface Mount Device
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver/Transmitter

UDP	User Datagram Protocol
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USB	Universal Serial Bus
USIM	Universal Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
V _{IH}	High-level input voltage
V _{IL}	Low-level input voltage
V _{OH}	High-level output voltage
V _{OL}	Low-level output voltage
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
V _{IL} max	Maximum Low-level Input Voltage
V _{RWM}	Working Peak Reverse Voltage
VSWR	Voltage Standing Wave Ratio